负焓合金化设计获得高强韧材料

安子冰,王钊为,刘珊珊,薛现猛,孙 铭,何亚鹏,刘银昭,毛圣成,张 泽,韩晓东*

负焓合金化设计获得高强韧材料

安子冰,王钊为,刘珊珊,薛现猛,孙  铭,何亚鹏,刘银昭,毛圣成,张  泽,韩晓东*

(1.南方科技大学 工学院,材料科学与工程系,广东 深圳 518000;2. 北京工业大学 固体微结构与性能北京市重点实验室,材料科学与工程学院,北京 100124;3.浙江大学 电子显微镜中心,硅及先进半导体材料全国重点实验室,材料科学与工程学院,浙江 杭州 310027)

摘  要  高熵合金是近年来发展的一种新型合金体系,具有较大的晶格畸变特征,展示出了高强度、高硬度、高耐磨性等力学特性。高熵合金通常呈现出高熵驱动的理想随机固溶体结构。因此,类似于传统金属及合金材料,缺乏调控位错等塑性变形载体的能力,高熵合金的强度与韧性之间依旧存在倒置矛盾关系。根据Gibbs自由能理论,混合焓是调控材料显微结构与力学性能的另一个抓手,其完全独立于混合熵并且与其相互竞争。然而,利用混合焓调控材料微观结构及力学性能在国际领域基本属于空白。课题组通过对系列高熵合金研究结果的梳理与总结,并结合对材料热力学与电子显微学的认识,阐明了混合焓对材料显微结构与力学性能的影响机制。本文综述了课题组针对材料混合焓−微观结构−力学性能相关性的研究工作,揭示了负混合焓是局部化学有序及成分波动等异质结构形成的本质原因,阐明了负焓合金的强韧化机理,探索了负焓强韧化合金设计路线,建立了混合焓、显微结构与力学性能的内在联系。负焓合金化设计理念不仅为高强韧合金设计提供了范例、更有助于发展先进结构材料新体系,同时也为传统材料的合金化设计提供数据支撑和理论支持。

关键词   高熵合金;显微结构;力学性能;混合焓;负焓合金

中图分类号:TG115.21+5.3;O76;TG146;O482;TB34  文献标识码:A         doi:10.3969/j.issn.1000-6281.2024.05.010

   

Negative enthalpy alloy design strategy towards strong yet ductile materials

AN Zibing12, WANG Zhaowei1, LIU Shanshan1, XUE Xianmeng2, SUN Ming2, HE Yapeng2, MAO Shengcheng2, ZHANG Ze3, HAN Xiaodong12*

(1. Southern University of Science and Technology, Department of Materials Science and Engineering, Shenzhen Guangdong 518055; 2. Being Key Laboratory of Microstructure and Advanced Materials, College of materials science and engineering, Beijing University of Technology, Beijing 100124; 3. Center of Electron Microscopy, State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Material Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310027, China)

Abstract     High-entropy alloys (HEAs) are a novel class of alloy systems developed in recent years, characterized by significant lattice distortion and superior mechanical properties, such as high strength, hardness, and wear resistance. HEAs typically adopt an ideal random solid solution structure driven by high entropy. However, much like traditional metals and alloys, they lack effective control over plastic deformation carriers, such as dislocations, leading to the classic strength−ductility trade-off. According to Gibbs free energy theory, mixing enthalpy is another crucial factor that influences the microstructure and mechanical properties of materials, operating independently from mixing entropy and often in competition with mixing entropy. Despite its importance, the role of mixing enthalpy in controlling microstructure and mechanical properties has largely remained unexplored in global research. By reviewing and summarizing our findings on various HEAs, and integrating insights from material thermodynamics and electron microscopy, we have clarified the mechanism by which mixing enthalpy affects the microstructure and mechanical properties of materials. This paper summarizes our research on the correlation between mixing enthalpy, microstructure and mechanical properties, revealing that negative mixing enthalpy is a key factor in the formation of heterogeneous structures such as local chemical ordering and composition fluctuations. We explain the strengthening and toughening mechanisms in alloys with negative enthalpy, explore design strategies based on negative mixing enthalpy, and establish the intrinsic relationship between mixing enthalpy, microstructure and mechanical properties. The concept of designing negative enthalpy alloys not only provides a promising pathway for developing strong yet ductile alloys, but also contributes to the advancement of next-generation structural materials. Furthermore, it offers valuable data and theoretical insights to support alloy design in traditional materials.

Keywords     high-entropy alloy; microstructure; mechanical property; mixing enthalpy; negative enthalpy alloy

 

“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”