[1] MA E J J. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J]. JOM, 2006, 58: 49-53.
[2] LU K,LU L,SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science, 2009, 324(5925): 349-352.
[3] LI H,ZONG H,LI S,et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604(7905): 273-279.
[4] CHENG Z,ZHOU H,LU Q,et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362(6414): eaau1925.
[5] WANG Y,CHEN M,ZHOU F,et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419(6910): 912-915.
[6] WU X,JIANG P,CHEN L,et al. Extraordinary strain hardening by gradient structure[M]. Heterostructured Materials: Jenny Stanford Publishing, 2021: 53-71.
[7] ZHU Y,WU X. Heterostructured materials [J]. Progress in Materials Science, 2023, 131: 101019.
[8] YEH J W,CHEN S K,LIN S J,et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[9] ZHANG L S,MA G L,FU L C,et al. Recent progress in high-entropy alloys [J]. Advanced Materials Research, 2013, 631-632: 227-232.
[10] SOHRABI M J,KALHOR A,MIRZADEH H,et al. Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review [J]. Progress in Materials Science, 2024, 144: 101295.
[11] GEORGE E P,RITCHIE R O. High-entropy materials [J]. MRS Bulletin, 2022, 47(2): 145-150.
[12] LI J,CHEN Y,HE Q,et al. Heterogeneous lattice strain strengthening in severely distorted crystalline solids [J]. Proceedings of the National Academy of Sciences, 2022, 119(25): e2200607119.
[13] SOHN S S,KWIATKOWSKI DA SILVA A,IKEDA Y,et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Advanced Materials, 2019, 31(8): 1807142.
[14] LEI Z,LIU X,WU Y,et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563(7732): 546-550.
[15] DING Q,ZHANG Y,CHEN X,et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223-227.
[16] AN Z,MAO S,LIU Y,et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. Journal of Materials Science & Technology, 2021, 79: 109-117.
[17] FENG R,FENG B,GAO M C,et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Advanced Materials, 2021, 33(48): 2102401.
[18] LEE C,SONG G,GAO M C,et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Materialia, 2018, 160: 158-172.
[19] AN Z,MAO S,LIU Y,et al. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. Journal of Materials Science & Technology, 2021, 92: 195-207.
[20] LEE C,CHOU Y,KIM G,et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Advanced Materials, 2020, 32(49): 2004029.
[21] LIU W H,LU Z P,HE J Y,et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Materialia, 2016, 116: 332-342.
[22] OTTO F,HANOLD N L,GEORGE E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39-48.
[23] OTTO F,DLOUHÝ A,SOMSEN C,et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743-5755.
[24] LI D,LI C,FENG T,et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures [J]. Acta Materialia, 2017, 123: 285-294.
[25] BU Y,WU Y,LEI Z,et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Materials Today, 2021, 46: 28-34.
[26] AN Z,LI A,MAO S,et al. Negative mixing enthalpy solid solutions deliver high strength and ductility [J]. Nature, 2024, 625(7996): 697-702.
[27] CHEN X,WANG Q,CHENG Z,et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592(7856): 712-716.
[28] LIU D,WANG Q,WANG J,et al. Chemical short-range order inFe50Mn30Co10Cr10 high-entropy alloy [J]. Materials Today Nano, 2021, 16: 100139.
[29] ZHANG R,ZHAO S,DING J,et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581(7808): 283-287.
[30] WANG J,JIANG P,YUAN F,et al. Chemical medium-range order in a medium-entropy alloy [J]. Nature Communications, 2022, 13(1): 1021.
[31] AN Z,MAO S,YANG T,et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Materials Horizons, 2021, 8(3): 948-955.
[32] CHEN Y,FANG Y,WANG R,et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity [J]. Journal of Materials Science & Technology, 2023, 141: 149-154.
[33] SHI P,LI R,LI Y,et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373(6557): 912-918.
[34] AN Z,YANG T,SHI C,et al. Negative enthalpy alloys and local chemical ordering: a concept and route leading to synergy of strength and ductility [J]. National Science Review, 2024, 11(4): nwae026.
[35] ZHANG Y,ZHOU Y J,LIN J P,et al. Solid-solution phase formation rules for multi-component alloys [J]. Advanced Engineering Materials, 2008, 10(6): 534-538.
[36] GAO M C,ZHANG C,GAO P,et al. Thermodynamics of concentrated solid solution alloys [J]. Current Opinion in Solid State and Materials Science, 2017, 21(5): 238-251.
[37] MIRACLE D B,SENKOV O N. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448-511.
[38] ZHANG W,LIAW P K,ZHANG Y. Science and technology in high-entropy alloys [J]. Science China Materials, 2018, 61(1): 2-22.
[39] TAKEUCHI A,INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Materials Transactions, 2005, 46(12): 2817-2829.
[40] SENKOV O N,SCOTT J M,SENKOVA S V,et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. Journal of Alloys and Compounds, 2011, 509(20): 6043-6048.
[41] OTTO F,YANG Y,BEI H,et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys [J]. Acta Materialia, 2013, 61(7): 2628-2638.
[42] TSAI M H,YEH J W. High-entropy alloys: A critical review [J]. Materials Research Letters, 2014, 2(3): 107-123.
[43] SENKOV O N,SENKOVA S V,MIRACLE D B,et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system [J]. Materials Science and Engineering: A, 2013, 565: 51-62.
[44] XIANG C,ZHANG Z M,FU H M,et al. Microstructure, mechanical properties, and corrosion behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi high-entropy alloys [J]. Acta Metallurgica Sinica (English Letters), 2019, 32(9): 1053-1064.
[45] HSU W L,TSAI C W,YEH A C,et al. Clarifying the four core effects of high-entropy materials [J]. Nature Reviews Chemistry, 2024, 8(6): 471-485.
[46] LI D,LIAW P K,XIE L,et al. Advanced high-entropy alloys breaking the property limits of current materials [J]. Journal of Materials Science & Technology, 2024, 186: 219-230.
[47] AN Z,MAO S,YANG T,et al. Simultaneously enhanced oxidation resistance and mechanical properties in a novel lightweight Ti2VZrNb0.5Al0.5 high-entropy alloy [J]. Science China Materials, 2022, 65(10): 2842-2849.
[48] TONG Y,ZHAO S,BEI H,et al. Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys [J]. Acta Materialia, 2020, 183: 172-181.
[49] SENKOV O N,SEMIATIN S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. Journal of Alloys and Compounds, 2015, 649: 1110-1123.
[50] WANG S P,MA E,XU J J I. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution [J]. Intermetallics, 2019, 107: 15-23.
[51] HAN Z,MENG L,YANG J,et al. Novel BCC VNbTa refractory multi-element alloys with superior tensile properties [J]. Materials Science and Engineering: A, 2021, 825: 141908.
[52] LAI W,LIU H,YU X,et al. A design of TiZr-rich body-centered cubic structured multi-principal element alloys with outstanding tensile strength and ductility [J]. Materials Science and Engineering: A, 2021, 813: 141135.
[53] LAI W,VOGEL F,ZHAO X,et al. Design of BCC refractory multi-principal element alloys with superior mechanical properties [J]. Materials Research Letters, 2022, 10(3): 133-140.
[54] SHEIKH S,SHAFEIE S,HU Q,et al. Alloy design for intrinsically ductile refractory high-entropy alloys [J]. Journal of Applied Physics, 2016, 120(16): 164902.
[55] WU Z,BEI H,PHARR G M,et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Materialia, 2014, 81: 428-441.
[56] MA E,WU X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy [J]. Nature Communications, 2019, 10(1): 5623.
[57] LI Q J,SHENG H,MA E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nature Communications, 2019, 10(1): 3563.
[58] WU X. Chemical short-range orders in high-/medium-entropy alloys [J]. Journal of Materials Science & Technology, 2023, 147: 189-196.
[59] XUN K,ZHANG B,WANG Q,et al. Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys [J]. Journal of Materials Science & Technology, 2023, 135: 221-230.
[60] 余倩,陈雨洁,方研. 高熵合金中的元素分布规律及其作用[J]. 金属学报,2021,57(4): 393-402.
[61] WANG L,DING J,CHEN S,et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys [J]. Nature Materials, 2023, 22(8): 950-957.
[62] ZHOU L,WANG Q,WANG J,et al. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy [J]. Acta Materialia, 2022, 224: 117490.
[63] WANG L,HAN X,LIU P,et al. In situ observation of dislocation behavior in nanometer grains [J]. Physical Review Letters, 2010, 105(13): 135501.
[64] LI X,WEI Y,LU L,et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals [J]. Nature, 2010, 464(7290): 877-880.
[65] YEH J W. Strength through high slip-plane density [J]. Science, 2021, 374(6570): 940-941.
[66] CAILLARD D. A TEM in situ study of alloying effects in iron. I—Solid solution softening caused by low concentrations of Ni, Si and Cr [J]. Acta Materialia, 2013, 61(8): 2793-2807.
[67] CAILLARD D. A TEM in situ study of alloying effects in iron. II—Solid solution hardening caused by high concentrations of Si and Cr [J]. Acta Materialia, 2013, 61(8): 2808-2827.
[68] YIN S,DING J,ASTA M,et al. Ab initio modeling of the role of local chemical short-range order on the Peierls potential of screw dislocations in bodycentered cubic high-entropy alloys [J]. arXiv Preprint arXiv:1912.10506, 2019.
[69] GUO S,LIU C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Progress in Natural Science: Materials International, 2011, 21(6): 433-446.
[70] DASARI S,SHARMA A,JIANG C,et al. Exceptional enhancement of mechanical properties in high-entropy alloys via thermodynamically guided local chemical ordering [J]. Proceedings of the National Academy of Sciences, 2023, 120(23): e2211787120.
[71] SENKOV O N,WILKS G B,SCOTT J M,et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698-706.
[72] RASOOLI N,CHEN W,DALY M J N. Deformation mechanisms in high entropy alloys: a minireview of short-range order effects [J]. 2024, 16(4): 1650-1663.
[73] BASINSKI Z S,SZCZERBA M S,EMBURY J D. Tensile instability in face-centred cubic materials [J]. Philosophical Magazine A, 1997, 76(4): 743-752.
[74] MA E. Unusual dislocation behavior in high-entropy alloys [J]. Scripta Materialia, 2020, 181: 127-133.
[75] MA E,ZHU T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals [J]. Materials Today, 2017, 20(6): 323-331.
[76] XU B,DUAN H,CHEN X,et al. Harnessing instability for work hardening in multi-principal element alloys [J]. Nature Materials, 2024, 23(6): 755-761.
[77] ZHU Q,HUANG Q,TIAN Y,et al. Hierarchical twinning governed by defective twin boundary in metallic materials [J]. Science Advances, 2022, 8(20): eabn8299.
[78] WEI Y,LI Y,ZHU L,et al. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nature Communications, 2014, 5(1): 3580.
[79] LI Z,PRADEEP K G,DENG Y,et al. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off [J]. Nature, 2016, 534(7606): 227-230.
[80] AN Z,MAO S,LIU Y,et al. Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy [J]. Acta Materialia, 2023, 243:118516.
[81] ARORA G,AIDHY D S. Machine learning enabled prediction of stacking fault energies in concentrated alloys [J]. Metals, 2020,10(8):1072.
[82] LIU S F,WU Y,WANG H T,et al. Stacking fault energy of face-centered-cubic high entropy alloys [J]. Intermetallics, 2018, 93: 269-273.
[83] KHAN T Z,KIRK T,VAZQUEZ G,et al. Towards stacking fault energy engineering in FCC high entropy alloys [J]. Acta Materialia, 2022, 224: 117472.
[84] DING J,YU Q,ASTA M,et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8919-8924.
[85] XU D,WANG M,LI T,et al. A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys [J]. Microstructures, 2022, 2(1): 2022001.
[86] SENKOV O N,MIRACLE D B,CHAPUT K J,et al. Development and exploration of refractory high entropy alloys—A review [J]. Journal of materials research, 2018, 33(19): 3092-3128.
[87] 韩晓东, 王立华, 张泽. 原子分辨的材料力学行为实验系统与晶界塑性原子机制[J]. 电子显微学报, 2023, 42(4): 543-564.
[88] DU X H,LI W P,CHANG H T,et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nature Communications, 2020, 11(1): 2390.
[89] YANG M,YAN D,YUAN F,et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proceedings of the National Academy of Sciences, 2018, 115(28): 7224-7229.