[1] REED R C, TAO T, WARNKEN N. Alloys-by-design: Application to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57(19): 5898-5913.
[2] MA E, LIU C. Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off[J]. Progress in Materials Science, 2024, 143: 101252.
[3] ZHU Y, WU X. Heterostructured materials[J]. Progress in Materials Science, 2023, 131: 101019.
[4] ZHU Y, AMEYAMA K, ANDERSON P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction[J]. Materials Research Letters, 2021, 9(1): 1-31.
[5] WU X, YANG M, YUAN F, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501-14505.
[6] HUGHES D A, HANSEN N. The microstructural origin of work hardening stages[J]. Acta Materialia, 2018, 148: 374-383.
[7] JIANG S, WANG H, WU Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651): 460-464.
[8] WU Z, BEI H, PHARR G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures[J]. Acta Materialia, 2014, 81: 428-441.
[9] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511.
[10] SENKOV O N, MIRACLE D B, CHAPUT K J, et al. Development and exploration of refractory high entropy alloys—A review[J]. Journal of Materials Research, 2018, 33(19): 3092-3128.
[11] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[12] 符晓倩, 余倩, 张泽. TWIP高熵合金中塑性变形机理的原位电镜研究[J]. 电子显微学报, 2019, 38(5): 452-458.
[13] YE Y F, WANG Q, LU J, et al. High-entropy alloy: Challenges and prospects[J]. Materials Today, 2016, 19(6): 349-362.
[14] LEE C, SONG G, GAO M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy[J]. Acta Materialia, 2018, 160: 158-172.
[15] YEH J W. Recent progress in high-entropy alloys[J]. European Journal of Control - EUR J CONTROL, 2006, 31: 633-648.
[16] HUANG P K, YEH J W, SHUN T T, et al. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating[J]. Advanced Engineering Materials, 2004, 6(1/2): 74-78.
[17] OTTO F, YANG Y, BEI H, et al. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys[J]. Acta Materialia, 2013, 61(7): 2628-2638.
[18] NABARRO F R N. The theory of solution hardening[J]. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1977, 35(3): 613-622.
[19] LABUSCH R. A statistical theory of solid solution hardening[J]. Physica Status Solidi (B), 1970, 41(2): 659-669.
[20] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys[J]. Nature, 2019, 574(7777): 223-227.
[21] ZHANG R, ZHAO S, DING J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy[J]. Nature, 2020, 581(7808): 283-287.
[22] ZHANG F X, ZHAO S, JIN K, et al. Local structure and short-range order in a NiCoCr solid solution alloy[J]. Physical Review Letters, 2017, 118(20): 205501.
[23] LIU S, WEI Y. The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys[J]. Extreme Mechanics Letters, 2017, 11: 84-88.
[24] 陈思静,余倩. NiCoCr高熵合金中Cr含量对其变形行为影响的原位透射电镜研究[J]. 电子显微学报, 2020, 39(6): 628-634.
[25] DASARI S, JAGETIA A, SHARMA A, et al. Tuning the degree of chemical ordering in the solid solution of a complex concentrated alloy and its impact on mechanical properties[J]. Acta Materialia, 2021, 212: 116938.
[26] DING J, YU Q, ASTA M, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8919-8924.
[27] MA E, WU X. Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy[J]. Nature Communications, 2019, 10(1): 5623.
[28] LI Q J, SHENG H, MA E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways[J]. Nature Communications, 2019, 10(1): 3563.
[29] WANG L, DING J, CHEN S, et al. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys[J]. Nature Materials, 2023, 22(8): 950-957.
[30] MA E, ZHU T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals[J]. Materials Today, 2017, 20(6): 323-331.
[31] GYORFFY B L, STOCKS G M. Concentration waves and Fermi surfaces in random metallic alloys[J]. Physical Review Letters, 1983, 50(5): 374-377.
[32] BU Y, WU Y, LEI Z, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys[J]. Materials Today, 2021, 46: 28-34.
[33] WU Y, ZHANG F, YUAN X, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys[J]. Journal of Materials Science & Technology, 2021, 62: 214-220.
[34] CHEN X, WANG Q, CHENG Z, et al. Direct observation of chemical short-range order in a medium-entropy alloy[J]. Nature, 2021, 592(7856): 712-716.
[35] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.
[36] MIAO J, SLONE C, DASARI S, et al. Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy[J]. Acta Materialia, 2021, 210: 116829.
[37] HAN L, MACCARI F, SOUZA FILHO I R, et al. A mechanically strong and ductile soft magnet with extremely low coercivity[J]. Nature, 2022, 608(7922): 310-316.
[38] 熊婷, 郑士建, 马秀良. 高熵合金AlCoCrFeNi2.1的共晶组织及析出相研究[J]. 电子显微学报, 2020, 39(5): 470-475.
[39] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.
[40] COURY F G, ZEPON G, BOLFARINI C. Multi-principal element alloys from the CrCoNi family: Outlook and perspectives[J]. Journal of Materials Research and Technology, 2021, 15: 3461-3480.
[41] CHEN Y, FANG Y, FU X, et al. Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy[J]. Journal of Materials Science & Technology, 2021, 73: 101-107.
[42] LILENSTEN L, COUZINIÉ J P, PERRIÈRE L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms[J]. Acta Materialia, 2018, 142: 131-141.
[43] RAO S I, VARVENNE C, WOODWARD C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy[J]. Acta Materialia, 2017, 125: 311-320.
[44] CHEN B, LI S, ZONG H, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys[J]. Proceedings of the National Academy of Sciences, 2020, 117(28): 16199-16206.
[45] XU S, HWANG E, JIAN W R, et al. Atomistic calculations of the generalized stacking fault energies in two refractory multi-principal element alloys[J]. Intermetallics, 2020, 124: 106844.
[46] WANG F, BALBUS G H, XU S, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy[J]. Science, 2020, 370(6512): 95-101.
[47] CHEN Y, FANG Y, WANG R, et al. Achieving high strength and ductility in high-entropy alloys via spinodal decomposition-induced compositional heterogeneity[J]. Journal of Materials Science & Technology, 2023, 141: 149-154.
[48] SEOL J B, BAE J W, KIM J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications[J]. Acta Materialia, 2020, 194: 366-377.
[49] JIAO M, LEI Z, WU Y, et al. Manipulating the ordered oxygen complexes to achieve high strength and ductility in medium-entropy alloys[J]. Nature Communications, 2023, 14(1): 806.
[50] YE Y X, OUYANG B, LIU C Z, et al. Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys[J]. Acta Materialia, 2020, 199: 413-424.
[51] WANG S, ZHANG T, DU S, et al. Tuning the microstructure and strengthening mechanism of the CoCrFeNi high-entropy alloy via doping metalloid and interstitial elements[J]. Journal of Alloys and Compounds, 2023, 960: 170622.
[52] LEI Z, LIU X, WU Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes[J]. Nature, 2018, 563(7732): 546-550.
[53] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.
[54] OTTO F, DLOUHÝ A, SOMSEN Ch, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755.
[55] WU Y, LIU W H, WANG X L, et al. In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy[J]. Applied Physics Letters, 2014, 104(5): 051910.
[56] OTTO F, DLOUHÝ A, PRADEEP K G, et al. Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures[J]. Acta Materialia, 2016, 112: 40-52.
[57] LIANG Y J, WANG L, WEN Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys[J]. Nature Communications, 2018, 9(1): 4063.
[58] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937.
[59] YANG Y, CHEN T, TAN L, et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy[J]. Nature, 2021, 595(7866): 245-249.
[60] MAITI S, STEURER W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy[J]. Acta Materialia, 2016, 106: 87-97.
[61] 隋曼龄, 王艳波, 崔静萍, 等. 透射电镜原位拉伸研究金属材料形变机制[J]. 电子显微学报, 2010, 29(3): 219-229.
[62] DAYONG A, YAO X, XINXI L, et al. Formation of two distinct cellular structures in 316L stainless steel fabricated by micro-laser beam powder-bed-fusion [J]. Materials Research Letters, 2023, 12(1): 42-49.
[63] MINGLIN H, HAILIN C, QIAN L, et al. Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion [J]. Additive Manufacturing, 2022, 55: 102839.
[64] WANG Y, WEN W, WU S, et al. Maize plant phenotyping: Comparing 3D laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates [J]. Remote Sensing, 2019, 11(1): 63.