[1] AKKERMAN Q A, NGUYEN T P, BOEHME S C, et al. Controlling the nucleation and growth kinetics of lead halide perovskite quantum dots [J]. Science, 2022, 377(6613): 1406-1412.
[2] LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent [J]. Nature, 2018, 562(7726): 245-248.
[3] CAO Y, WANG N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018, 562(7726): 249-253.
[4] WANG J, ZENG L, ZHANG D, et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells [J]. Nature Energy, 2024, 9(1): 70-80.
[5] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[6]刘柳. CsPbX3 (X=Cl, Br, I)钙钛矿量子点的制备及应用研究[J]. 电子显微学报, 2019, 38(1): 6.
[7] Best research-cell efficiency chart. NREL www.nrel.gov/pv/cell-efficiency.html (2024).
[8] BAI W, XUAN T, ZHAO H, et al. Perovskite light-emitting diodes with an external quantum efficiency exceeding 30% [J]. Advanced Materials, 2023, 35(39): 2302283.
[9] BERHE T A, SU W-N, CHEN C-H, et al. Organometal halide perovskite solar cells: Degradation and stability [J]. Energy & Environmental Science, 2016, 9(2): 323-356.
[10]楼浩然, 叶志镇, 何海平. 铅卤钙钛矿的光稳定性研究进展[J]. 物理学报, 2019, 68(15): 13.
[11]葛杨, 卢岳, 隋曼龄. 有机无机掺杂钙钛矿太阳能电池界面的光氧失稳机理研究[J]. 电子显微学报, 2019, 38(6): 8.
[12]张钰, 周欢萍. 有机-无机杂化钙钛矿材料的本征稳定性[J]. 物理学报, 2019, 68(15): 11.
[13] KOSASIH F U, DUCATI C. Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy [J]. Nano Energy, 2018, 47: 243-256.
[14] YUAN B, YU Y. High-resolution transmission electron microscopy of beam-sensitive halide perovskites [J]. Chem, 2022, 8(2): 327-339.
[15] SONG K, LIU L, ZHANG D, et al. Atomic-resolution imaging of halide perovskites using electron microscopy [J]. Advanced Energy Materials, 2020, 10(26): 1904006.
[16] KUNDU S, KELLY T L. In situ studies of the degradation mechanisms of perovskite solar cells [J]. EcoMat, 2020, 2(2): e12025.
[17] 罗攀, 李响, 孙学银, 等. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应[J]. 物理学报, 2024, 73(3): 036102.
[18] 冯远皓, 柯小行, 隋曼龄. 无机双钙钛矿太阳能电池材料Cs2AgBiBr6在电子束辐照下的降解行为研究[J]. 电子显微学报, 2020, 39(1): 8.
[19] CHEN S, GAO P. Challenges, myths, and opportunities of electron microscopy on halide perovskites [J]. Journal of Applied Physics, 2020, 128(1): 010901.
[20] ZHOU Y, STERNLICHT H, PADTURE N P. Transmission electron microscopy of halide perovskite materials and devices [J]. Joule, 2019, 3(3): 641-661.
[21] CHEN Q, DWYER C, SHENG G, et al. Imaging beam‐sensitive materials by electron microscopy [J]. Advanced Materials, 2020, 32(16): 1907619.
[22] EGERTON R F. Radiation damage to organic and inorganic specimens in the TEM [J]. Micron, 2019, 119: 72-87.
[23] EGERTON R F, LAZAR S, LIBERA M. Delocalized radiation damage in polymers [J]. Micron, 2012, 43(1): 2-7.
[24] EGERTON R F, LI P, MALAC M. Radiation damage in the TEM and SEM [J]. Micron, 2004, 35(6): 399-409.
[25] GAO P, ISHIKAWA R, TOCHIGI E, et al. Atomic-scale tracking of a phase transition from spinel to rocksalt in lithium manganese oxide [J]. Chemistry of Materials, 2017, 29(3): 1006-1013.
[26] ROTHMANN M U, LI W, ZHU Y, et al. Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3 [J]. Nature Communications, 2017, 8(1): 14547.
[27] SHI E, YUAN B, SHIRING S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures [J]. Nature, 2020, 580(7805): 614-620.
[28] JOON JUNG H, KIM D, KIM S, et al. Operando injection of oxygen ions to organometal halide perovskite (CH3NH3PbI3) under in-situ electrical biasing STEM-EELS [J]. Microscopy and Microanalysis, 2017, 23(S1): 1976-1977.
[29] ZONG Y, ZHOU Y, ZHANG Y, et al. Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability [J]. Chem, 2018, 4(6): 1404-1415.
[30] 陈树林, 高鹏. 原位电子显微学探索固体中的离子迁移行为[J]. 物理,2019,48(3): 168-179.
[31] 翁素婷, 张庆华, 谷林. 原位电子显微学方法在材料研究中的应用[J]. 电子显微学报, 2019(5): 13.
[32] 陈朕欣, 柯小行, 朱陆军, 等. 有机无机杂化钙钛矿太阳能电池材料的电子辐照降解机制研究与电子显微成像条件探索[J]. 电子显微学报, 2019, 38(1): 7.
[33] KIM M-C, AHN N, CHENG D, et al. Imaging real-time amorphization of hybrid perovskite solar cells under electrical biasing [J]. ACS Energy Letters, 2021, 6(10): 3530-3537.
[34] KIM T W, SHIBAYAMA N, COJOCARU L, et al. Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation [J]. Advanced Functional Materials, 2018, 28(42): 1804039.
[35] YANG B, DYCK O, MING W, et al. Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM [J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32333-32340.
[36] DIVITINI G, CACOVICH S, MATTEOCCI F, et al. In situ observation of heat-induced degradation of perovskite solar cells [J]. Nature Energy, 2016, 1(2): 15012.
[37] CHEN S, WU C, HAN B, et al. Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway [J]. Nature Communications, 2021, 12(1): 5516.
[38] ROTHMANN M U, LI W, ZHU Y, et al. Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams [J]. Advanced Materials, 2018, 30(25): 1800629.
[39] CHEN X, WANG Z. Investigating chemical and structural instabilities of lead halide perovskite induced by electron beam irradiation [J]. Micron, 2019, 116: 73-79.
[40] CHEN S, ZHANG X, ZHAO J, et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite [J]. Nature Communications, 2018, 9(1): 4807.
[41] CHEN S, ZHANG Y, ZHANG X, et al. General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism [J]. Advanced Materials, 2020, 32(29): 2001107.
[42] ALBERTI A, BONGIORNO C, SMECCA E, et al. Pb clustering and PbI2 nanofragmentation during methylammonium lead iodide perovskite degradation [J]. Nature Communications, 2019, 10(1): 2196.
[43] WILLIAMS D B, CARTER C B, Microscopy C T E. A textbook for materials science [M]. Transmission Electron Microscope, 2009.
[44] NING Z, GONG X, COMIN R, et al. Quantum-dot-in-perovskite solids [J]. Nature, 2015, 523(7560): 324-328.
[45] FAN Z, XIAO H, WANG Y, et al. Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates [J]. Joule, 2017, 1(3): 548-562.
[46] LI D, WANG G, CHENG H C, et al. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals [J]. Nature Communications, 2016, 7(1): 11330.
[47] XIAO M, HUANG F, HUANG W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells [J]. Angewandte Chemie, 2014, 53(37): 9898-9903.
[48] ZHAO C, TIAN W, LENG J, et al. Diffusion-correlated local photoluminescence kinetics in CH3NH3PbI3 perovskite single-crystalline particles [J]. Science Bulletin, 2016, 61(9): 665-669.
[49] GAO L, ZENG K, GUO J, et al. Passivated single-crystalline CH3NH3PbI3 nanowire photodetector with high detectivity and polarization sensitivity [J]. Nano Letters, 2016, 16(12): 7446-7454.
[50] TANG G, YOU P, TAI Q, et al. Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells [J]. Advanced Materials 2019, 31(24): 1807689.
[51] SON D-Y, LEE J-W, CHOI Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells [J]. Nature Energy, 2016, 1(7): 16081.
[52] ZHU F, MEN L, GUO Y, et al. Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals [J]. ACS Nano, 2015, 9(3): 2948-2959.
[53] DENG Y-H. Perovskite decomposition and missing crystal planes in HRTEM [J]. Nature, 2021, 594(7862): E6-E7.
[54] NING Z, GONG X, COMIN R, et al. Reply to: Perovskite decomposition and missing crystal planes in HRTEM [J]. Nature, 2021, 594(7862): E8-E9.
[55] CHEN S, ZHANG Y, ZHAO J, et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: Myths and truths [J]. Science Bulletin, 2020, 65(19): 1643-1649.
[56] KÜHNE M, BÖRRNERT F, FECHER S, et al. Reversible superdense ordering of lithium between two graphene sheets [J]. Nature, 2018, 564(7735): 234-239.
[57] WARNER J H, YOUNG N P, KIRKLAND A I, et al. Resolving strain in carbon nanotubes at the atomic level [J]. Nature Materials, 2011, 10(12): 958-962.
[58] DANG Z, SHAMSI J, PALAZON F, et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals [J]. ACS Nano, 2017, 11(2): 2124-2132.
[59] HARUYAMA J, SODEYAMA K, HAN L, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers [J]. Journal of the American Chemical Society, 2015, 137(32): 10048-10051.
[60] MA C, EICKEMEYER F T, LEE S-H, et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells [J]. Science, 2023, 379(6628): 173-178.
[61] WANG Z, OU Q, ZHANG Y, et al. Degradation of two-dimensional CH3NH3PbI3 perovskite and CH3NH3PbI3/graphene heterostructure [J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24258-24265.
[62] DONG X, FANG X, LÜ M, et al. Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition [J]. Journal of Materials Chemistry A, 2015, 3(10): 5360-5367.
[63] FERNANDEZ-LEIRO R, SCHERES S H W. Unravelling biological macromolecules with Cryo-electron microscopy [J]. Nature, 2016, 537(7620): 339-346.
[64] ZHANG D, ZHU Y, LIU L, et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials [J]. Science, 2018, 359(6376): 675-679.
[65] ZHOU J, WEI N, ZHANG D, et al. Cryogenic focused ion beam enables atomic-resolution imaging of local structures in highly sensitive bulk crystals and devices [J]. Journal of the American Chemical Society, 2022, 144(7): 3182-3191.
[66] ZHU Y, GUI Z, WANG Q, et al. Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by Cryo-TEM [J]. Nano Energy, 2020, 73, 104820.
[67] LI Y, ZHOU W, LI Y, et al. Unravelling degradation mechanisms and atomic structure of organic-inorganic halide perovskites by cryo-EM [J]. Joule, 2019, 3(11): 2854-2866.
[68] ROTHMANN M U, KIM J S, BORCHERT J, et al. Atomic-scale microstructure of metal halide perovskite [J]. Science,2020, 370, eabb5940.
[69] CHEN S, WU C, SHANG Q, et al. Atomic structure and electrical/ionic activity of antiphase boundary in CH3NH3PbI3 [J]. Acta Materialia, 2022, 234: 118010.
[70] CAI S, DAI J, SHAO Z, et al. Atomically resolved electrically active intragrain interfaces in perovskite semiconductors [J]. Journal of the American Chemical Society, 2022, 144(4): 1910-1920.
[71] CAI S, LI Z, ZHANG Y, et al. Intragrain impurity annihilation for highly efficient and stable perovskite solar cells [J]. Nature Communications, 2024, 15(1): 2329.
[72] ZHU L, JIN X, ZHANG Y Y, et al. Visualizing anisotropic oxygen diffusion in ceria under activated conditions [J]. Physical Review Letters, 2020, 124(5): 056002.
[73] GAO P, KANG Z, FU W, et al. Electrically driven redox process in cerium oxides [J]. Journal of the American Chemical Society, 2010, 132(12): 4197-4201.
[74] HUANG W, MANSER J S, KAMAT P V, et al. Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions [J]. Chemistry of Materials, 2016, 28(1): 303-311.
[75] XU R-P, LI Y-Q, JIN T-Y, et al. In situ observation of light illumination-induced degradation in organometal mixed-halide perovskite films [J]. ACS Applied Materials Interfaces, 2018, 10(7): 6737-6746.
[76] XUE Y, SHAN Y, XU H. First-principles study on the initial decomposition process of CH3NH3PbI3 [J]. The Journal of Chemical Physics, 2017, 147(12), 124702.
[77] 于荣, 沙浩治, 崔吉哲, 等. 电子叠层的原理与特点[J]. 电子显微学报, 2023, 42(6): 767-781.
[78] ZHANG X, SHEN J-X, TURIANSKY M E, et al. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites [J]. Nature Materials, 2021, 20(7): 971-976.