仿生Al2O3/SiCnw/环氧复合材料的制备及性能研究
张宇贝,孙晓毅,李逢时*,张 蔷,卢洪来,岳永海*
(1.北京航空航天大学化学学院,北京102206;2.北京航空航天大学国际前沿交叉科学研究院,北京100191)
摘 要 生物结构为设计和制造具有优异性能的先进材料提供了灵感,本文受螳螂虾中抗冲击区域结构启发,发展了一种基于3D打印制备氧化铝正弦波纹结构与冰模板法构筑碳化硅纳米线层状结构相结合的多组装策略,并通过浸渗环氧树脂,最终成功构建了仿生陶瓷-聚合物复合材料。实验表明,波纹结构和与之垂直排列的层状结构通过多尺度耦合强化作用,同时利用聚合物阻止了裂纹扩展,使得该复合结构的力学性能较于单一结构得到了提升。这种通过双组装高效制备仿生多级次结构的策略,在航空航天、装甲防护以及电磁屏蔽等领域具有较大应用潜力。
关键词 3D打印;冰模板法;仿生多层级结构;结构表征;力学性能
中图分类号:TB332; TB321; TB324; TQ174.6 文献标识码:A
Preparation and mechanical characterization of bioinspired Al2O3/SiCnw/Epoxy composites
ZHANG Yubei1, SUN Xiaoyi1, LI Fengshi1,2 *, ZHANG Qiang1, LU Honglai1, YUE Yonghai1 *
(1. School of Chemistry, Beihang University, Beijing 102206; 2. International Institute for Interdisciplinary and Frontiers, Beihang University, Beijing 100191, China)
Abstract Biomaterials with hierarchical structures provide inspiration for designing and manufacturing biomimetic materials with excellent mechanical properties. This article is inspired by the " sinusoidal structure " found in the mantis shrimp. A high-efficiency biomimetic multi-level assembly strategy was developed, combining 3D printing technology to construct an Al2O3 sinusoidal structure with the ice-template method to construct a SiCnw laminar structure. Finally, the bioinspired Al2O3/SiCnw/Epoxy composites were successfully constructed by impregnating epoxy resin. Experimental results showed that due to the coupling strengthening effect of the sinusoidal structure and the laminar structure, the polymer prevented crack propagation, improving the mechanical properties of the composite structure compared to a single sinusoidal structure. This dual assembly strategy demonstrated the enormous potential of designing and preparing biomimetic multiscale structures. The efficient preparation of biomimetic multiscale structures through double assembly holds great potential for applications in aerospace, armor protection, and electromagnetic shielding.
Keywords 3D printing; ice-template method; biomimetic multi-scale structure; mechanical properties
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: Structure and mechanical properties[J]. Prog Mater Sci, 2008, 53(1):1-206.
[2] NALLA R K, KINNEY J H, RITCHIE R O. Mechanistic fracture criteria for the failure of human cortical bone[J]. Nat Mater, 2003, 2:164-168.
[3] FRATZL P. Cellulose and collagen: From fibres to tissues[J]. Curr Opin Colloid Interface Sci, 2004, 8(1):32-39.
[4] MAYER G. Rigid biological systems as models for synthetic composites[J]. Science, 2005, 310(5751):1144-1147.
[5] JIAO D, LIU Z Q, QU R T, et al. Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell[J]. Mater Sci Eng C, 2016, 59:828-837.
[6] BARTHELAT F. Growing a synthetic mollusk shell[J]. Science, 2016, 354(6308):32-33.
[7] BEHERA R P, LE FERRAND H. Impact-resistant materials inspired by the mantis shrimp's dactyl club[J]. Matter, 2021, 4(9):2831-2849.
[8] WEN S M, CHEN S M, GAO W, et al. Biomimetic gradient Bouligand structure enhances impact resistance of ceramic-polymer composites[J]. Adv Mater, 2023, 35(21): 2211175.
[9] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086):1275-1280.
[10] MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: Critical mechanics-materials connections[J]. Science, 2013, 339(6121):773-779.
[11] AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of euplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science, 2005, 309(5732):275-278.
[12] PENG M, WEN Z, XIE L, et al. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience[J]. Adv Mater, 2019, 31(35):1902930.
[13] BAI H, CHEN Y, DELATTRE B, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Sci Adv, 1(11):e1500849.
[14] FUKASAWA T, DENG Z Y, ANDO M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. J Mater Sci, 2001, 36(10):2523-2527.
[15] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science, 2008, 322(5907):1516-1520.
[16] 孙晓毅, 邓清井, 张宇贝, 等. 仿生层状骨架结构的可控构筑及其显微结构表征[J]. 电子显微学报, 2023, 42(6):713-721.
[17] ZHENG X, SMITH W, JACKSON J, et al. Addendum: Multiscale metallic metamaterials[J]. Nat Mater, 2016, 16(4):497-497.
[18] XIAOYU Z, HOWON L, TODD H W, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190):1373-1377.
[19] ZHANG P, HEYNE M A, TO A C. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing[J]. J Mech Phys Solids, 2015, 83:285-300.
[20] YANG Y, LI X, CHU M, et al. Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability[J]. Sci Adv, 2019, 5(4): eaau9490.
[21] KOKKINIS D, SCHAFFNER M, STUDART A R. Multimaterial magnetically assisted 3D printing of composite materials[J]. Nat Commun, 2015, 6:8643.
[22] MARTIN J J, FIORE B E, ERB R M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing[J]. Nat Commun, 2015, 6:8641.
[23] STUDART A R. Additive manufacturing of biologically-inspired materials[J]. Chem Soc Rev, 2016, 45(2):359-376.
[24] GU D, YANG J, LIN K, et al. Compression performance and mechanism of superimposed sine-wave structures fabricated by selective laser melting[J]. Mater Design, 2021, 198:109219.