BiFeO3-NiFe2O4复合多铁薄膜的微观结构及磁电耦合研究
王靖辉,陈双杰,吕晓东,刘嘉琦,唐云龙*, 朱银莲*, 马秀良
(1.中国科学院金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳110016;2.中国科学技术大学 材料科学与工程学院,辽宁 沈阳 110016;3. 松山湖材料实验室 大湾区显微科学与技术研究中心,广东东莞523808;4. 湖南科技大学 材料科学与工程学院,湖南 湘潭 411201; 5.粤港澳大湾区量子科学中心, 广东 深圳 518000; 6.中国科学院物理研究所,北京 100190)
摘 要 结合透射电子显微镜和多模式原子力显微镜技术,本文探索研究了生长在Nb:SrTiO3上的BiFeO3-NiFe2O4复合薄膜的微观结构和磁电耦合性能。衍衬分析和选区电子衍射表明BiFeO3和NiFe2O4在沉积过程中发生相分离并自组装外延生长形成纳米复合结构。进一步利用像差校正透射电子显微镜揭示了BiFeO3与NiFe2O4两相间的界面和相分离细节;BiFeO3基体中存在大量的层状缺陷和氧空位片,造成局部晶格膨胀和复杂的极化分布。多模式原子力显微镜测量证明了复合薄膜具有良好的铁电翻转和保持性能,以及较低的漏电流和明显的磁电耦合。本工作呈现了一种自组装复合多铁材料的制备与表征,期望为未来微电子器件设计提供借鉴和指导。
关键词 多铁性复合薄膜;自组装;像差校正电子显微学;磁电耦合
中图分类号:TB383;O77;TG115. 21+ 5. 3 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.05.004
Study on microstructure and magnetoelectric coupling of BiFeO3-NiFe2O4 composite multiferroic thin films
WANG Jinghui1,2, CHEN Shuangjie1,2, LV Xiaodong1,2, LIU Jiaqi1,2, TANG Yunlong1,2*, ZHU Yinlian3,4*, MA Xiuliang3,5,6
(1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016; 2. School of Material Science and Engineering, University of Science and Technology of China, Shenyang Liaoning 110016; 3. Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan Guangdong 523808; 4. School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201; 5. Quantum Science Center of Guangdong-HongKong-Macau Greater Bay Area, Shenzhen Guangdong 518000; 6. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
Abstract Utilizing transmission electron microscopy and multimodal atomic force microscopy,we investigated the microstructure and magnetoelectric coupling of BiFeO3-NiFe2O4 composite films grown on Nb: SrTiO3. TEM diffraction contrast images and selected area electron diffraction revealed that BiFeO3 and NiFe2O4 underwent phase separation and self-assembly during the epitaxial growth process. Furthermore, aberration-corrected transmission electron microscopy provided detailed insights into the BiFeO3-NiFe2O4 interface and phase separation, as well as the presence of numerous layered defects and oxygen vacancy planes within the BiFeO3 matrix. These structural features led to local lattice expansion and a complex spontaneous polarization distribution. Multimodal atomic force microscopy measurements demonstrated the composites films’ excellent ferroelectric polarization switching and retention, along with low leakage current and significant magnetoelectric coupling. This work presented the preparation and characterization of self-assembled BiFeO3-NiFe2O4 composite multiferroic films, providing a valuable reference and guidance for the design of novel microelectronic devices.
Keywords composite multiferroics;self-assembly;aberration-corrected scanning transmission electron microscopy;magnetoelectric coupling
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials [J]. Nature, 2006, 442: 759-765.
[2] SPALDIN N A, RAMESH R. Advances in magnetoelectric multiferroics [J]. Nature Materials, 2019, 18: 203-212.
[3] ORTEGA N, KUMAR A, SCOTT J F, et al. Multifunctional magnetoelectric materials for device applications [J]. Journal of Physics: Condensed Matter, 2015, 27: 504002.
[4] FIEBIG M, LOTTERMOSER T, MEIER D, et al. The evolution of multiferroics [J]. Nature Reviews Materials, 2016, 1: 16046.
[5] CHANNAGOUDRA G, DAYAL V. Magnetoelectric coupling in ferromagnetic/ferroelectric heterostructures: A survey and perspective [J]. Journal of Alloys and Compounds, 2022, 928: 167181.
[6] EDERER C, SPALDIN N A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite [J]. Physical Review B,2005, 71: 060401(R).
[7] 朱柳, 胡阳, 胡旺, 等. 低维磁性异质结复合材料的界面和电镜表征[J]. 电子显微学报, 2022, 41(3): 341-361.
[8] LI Y, WANG Z, YAO J, et al. Magnetoelectric quasi-(0-3) nanocomposite heterostructures [J]. Nature Communications, 2015, 6: 6680.
[9] RAFIQUE M, HERKLOTZ A, DÖRR K, et al. Giant room temperature magnetoelectric response in strain controlled nanocomposites [J]. Applied Physics Letters, 2017, 110: 202902.
[10] ZHENG H, STRAUB F, ZHAN Q, et al. Self‐assembled growth of BiFeO3-CoFe2O4 nanostructures [J]. Advanced Materials, 2006, 18: 2747-2752.
[11] AIMON N M, CHOI H K, SUN X Y, et al. Templated self-assembly of functional oxide nanocomposites [J]. Advanced Materials, 2014, 26: 3063-3067.
[12] COMES R, LIU H, KHOKHLOV M, et al. Directed self-assembly of epitaxial CoFe2O4-BiFeO3 multiferroic nanocomposites [J]. Nano Letters, 2012, 12: 2367-2373.
[13] CHEN Y J, HSIEH Y H, LIAO S C, et al. Strong magnetic enhancement in self-assembled multiferroic-ferrimagnetic nanostructures [J]. Nanoscale, 2013, 5: 4449-4453.
[14] KIM D H, AIMON N M, SUN X, et al. Compositionally modulated magnetic epitaxial spinel/perovskite nanocomposite thin films [J]. Advanced Functional Materials, 2013, 24: 2334-2342.
[15] HSIEH Y H, LIOU J M, HUANG B C, et al. Local conduction at the BiFeO3-CoFe2O4 tubular oxide interface [J]. Advanced Materials, 2012, 24: 4564-4568.
[16] HSIEH Y H, STRELCOV E, LIOU J M, et al. Electrical modulation of the local conduction at oxide tubular interfaces [J]. ACS Nano, 2013, 7: 8627-8633.
[17] ZAVALICHE F, ZHAO T, ZHENG H, et al. Electrically assisted magnetic recording in multiferroic nanostructures [J]. Nano Letters, 2007, 7: 1586-1590.
[18] WANG L, BIAN J, LU L, et al. Interfacial strain driven magnetoelectric coupling in (111)-oriented self-assembled BiFeO3–CoFe2O4 thin films [J]. Journal of Materials Chemistry C, 2020, 8: 3527-3535.
[19] AIMON N M, KIM D H, SUN X, et al. Multiferroic behavior of templated BiFeO3-CoFe2O4 self-assembled nanocomposites [J]. ACS Applied Materials & Interfaces, 2015, 7: 2263-2268.
[20] AMRILLAH T, BITLA Y, SHIN K, et al. Flexible multiferroic bulk heterojunction with giant magnetoelectric coupling via van der waals epitaxy [J]. ACS Nano, 2017, 11: 6122-6130.
[21] TYAGI M, CHATTERJEE R, SHARMA P. Improved dielectric and magnetic properties of multiferroic BiFeO3–NiFe2O4 nanocomposite thin films [J]. Journal of Sol-Gel Science and Technology, 2015, 74: 692-697.
[22] GU J, YANG S, YANG W, et al. Effects of NiFe2O4 on magnetoelectric coupling effect of BiFeO3 thin films [J]. Journal of Magnetism and Magnetic Materials, 2014, 349: 140-143.
[23] WANG J, CHEN C, XU B, et al. Temperature dependence of exchange bias in NiFe2O4/BiFeO3 bilayers [J]. Applied Surface Science, 2020, 517: 146165.
[24] WANG C, ZHOU L, FU Q, et al. Exchange bias in spin-glass-like NiFe2O4/BiFeO3 heterojunction at room temperature [J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 372-377.
[25] 刘素贞, 唐云龙, 朱银莲, 等. 热致偏析构筑自适应垂直异质结[J]. 电子显微学报, 2022, 41(5): 535–541.
[26] DILEEP K, LOUKYA B, PACHAURI N, et al. Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy [J]. Journal of Applied Physics, 2014, 116: 103505.
[27] KE X X, ZHANG M C, ZHAO K N, et al. Moiré fringe method via scanning transmission electron microscopy [J]. Small Methods, 2022, 6: 2101040.
[28] ZHANG D, SANDO D, SHARMA P, et al. Superior polarization retention through engineered domain wall pinning [J]. Nature Communications, 2020, 11: 349.
[29] GENG W R, TIAN X H, JIANG Y X, et al. Unveiling the pinning behavior of charged domain walls in BiFeO3 thin films via vacancy defects [J]. Acta Materialia, 2020, 186: 68-76.
[30] 陈双杰, 唐云龙, 朱银莲, 等. 类四方BiFeO3薄膜中新型极化拓扑结构研究[J]. 电子显微学报, 2023, 42(4): 424–432.
[31] 石彤彤, 耿皖荣, 朱银莲, 等. 多铁性BiFeO3薄膜中复杂畴组态的亚埃尺度研究[J]. 电子显微学报, 2021, 40(5): 522–528.