热处理对一种新型析出强化型奥氏体不锈钢显微组织与性能的影响
张昊翔,丁青青*,姚 霞,周 倩,刘登宇,魏 晓,贝红斌*
(浙江大学材料科学与工程学院,浙江 杭州 310027)
摘 要 新型析出强化型奥氏体不锈钢Fe-(26-29)Ni-(13-19)Cr-(2.8-3.0)Al-(1.8-2.4)Ti(wt.%)具有优异的高温强度和抗氧化性能。为了揭示热处理工艺与力学性能间关联关系,本文利用先进扫描/透射电子显微技术系统地研究了再结晶和时效温度对Fe-29Ni-18Cr-3Al-2.35Ti (wt.%)合金显微结构的影响,利用拉伸试验测试了热处理工艺不同合金的力学性能。试验结果表明时效处理后,钢中均析出大量与基体共格的L12结构纳米级球形析出相Ni3(Al, Ti),但再结晶温度低于1040℃或时效温度高于720℃时,合金中将析出有害相{Ni2AlTi和Fe(Cr, Mo)},这些有害相虽然能够提高合金室温强度,但会消耗Al、Ti元素,降低纳米Ni3(Al, Ti)体积分数,损害合金的高温强度。
关键词 热处理工艺;析出强化;显微组织;力学性能
中图分类号:TG132.3+2;TG113.12;TG113.25+1;TG113.25+3 文献标识码:A
The Effect of heat treatment on microstructure and mechanical properties of a precipitation-strengthened austenitic stainless steel
ZHANG Haoxiang,DING Qingqing*,YAO Xia,ZHOU Qian,
LIU Dengyu,WEI Xiao,BEI Hongbin*
(School of Materials Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310027,China)
Abstract The newly-developed precipitation-strengthened austenitic stainless steels Fe-(26-29)Ni-(13-19)Cr-(2.8-3.0)Al-(1.8-2.4)Ti(wt.%) exhibit excellent high-temperature strength and oxidation resistance. To elucidate the relationship between heat treatment and mechanical properties, the effects of recrystallization and aging temperatures on the microstructure of Fe-29Ni-18Cr-3Al-2.35Ti (wt.%) steel were systematically investigated using advanced scanning/transmission electron microscopy. The mechanical properties of steels subjected to different heat treatments were measured via tensile tests. Results showed that after aging treatment, a large number of spherical Ni3(Al, Ti) nanoprecipitates with an L12 structure formed in the steels. However, when the recrystallization temperature was lower than 1040 oC or the aging temperature was higher than 720 oC, harmful phases [Ni2AlTi and Fe (Cr, Mo)] precipitated. Although those harmful phases appeared to improve the strength at room temperature, they consumed Al and Ti elements, reducing the volume fraction of nano-Ni3 (Al, Ti) and consequently decreasing the high-temperature strength of the steels.
Keywords heat treatment; precipitation strengthening; microstructure; mechanical property
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] ZHANG J, HU Z, ZHAI G, et al. Creep damage characteristics and evolution of HR3C austenitic steel during long term creep [J]. Materials Science and Engineering: A, 2022, 832: 142432.
[2] LO K H, SHEK C H, LAI J K L. Recent developments in stainless steels [J]. Materials Science and Engineering: R: Reports, 2009, 65(4/5/6): 39-104.
[3] VISWANATHAN R, HENRY J F, TANZOSH J, et al. U.S. program on materials technology for ultra-supercritical coal power plants [J]. Journal of Materials Engineering and Performance, 2005, 14(3): 281-292.
[4] 丁青青, 张泽, 贝红斌, 等. 一种析出强化的高强度抗氧化铁基高温合金及其制备方法[P]. 中国:ZL202210669337.6. 2023-01-03.
[5] ZHANG H, DING Q, LI Y, et al. Nanoprecipitate strengthened, alumina forming austenitic stainless steels for elevated temperature applications [J]. Journal of Materials Research and Technology, 2024, 30: 6447-6456.
[6] 代礼斌, 万红, 王东哲, 等. 热处理工艺对A286 合金组织和性能的影响[J]. 热加工工艺, 2018, 47(22): 181-184.
[7] YAMAMOTO Y, BRADY M P, SANTELLA M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metallurgical and Materials Transactions A, 2011, 42: 922-31.
[8] De CICCO H, LUPPO M I, GRIBAUDO L M, et al. Microstructural development and creep behavior in A286 superalloy [J]. Materials Characterization, 2004, 52(2): 85-92.
[9] LIU S, GAO Y, LIN Z, et al. Microstructure and properties after deformation and aging process of A286 superalloy [J]. Rare Metals, 2019, 38(9): 864-870.
[10] MATHEW M D, PALANICHAMY P, LATHA S, et al. Microstructural changes in alloy 625 due to creep and characterization using NDE techniques [J]. Transactions of the lndian lnstitute of Metals, 2010, 63(2/3): 449-452.
[11] CHOUDHURI D, ALAM T, BORKAR T, et al. Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy [J]. Scripta Materialia, 2015, 100: 36-39.
[12] KIM W C, NA M Y, KWON H J, et al. DesigningL21-strengthened Al-Cr-Fe-Ni-Ti complex concentrated alloys for high temperature applications[J]. Acta Materialia, 2021, 211: 116890.
[13] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.
[14] ZHANG P, YUAN Y, GU Y F, et al. Investigation on the tensile deformation mechanisms in a new Ni–Fe-base superalloy HT700T at 750 ℃[J]. Journal of Alloys and Compounds, 2020, 825: 154012.
[15] HE J Y, WANG H, WU Y, et al. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy [J]. Materials Science and Engineering: A, 2017, 686: 34-40.
[16] LI L, DING Q, ZHANG Z, et al. The effect of Al and Ti on the microstructure, mechanical properties and oxidation resistance of γ′-Ni3(Al, Ti) strengthened austenitic stainless steels [J]. Journal of Materials Research and Technology, 2023, 24: 4650-4660.
[17] YAMAMOTO Y, MURALIDHARAN G, BRADY M P. Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys [J]. Scripta Materialia, 2013, 69(11/12): 816-819.
[18] HSIEH C, WU W. Overview of intermetallic sigma (σ) phase precipitation in stainless steels [J]. International Scholarly Research Notices, 2012, 2012: 1-16.
[19] WAANDERS F B, VORSTER S W. The influence of Mo on the formation of the σ-phase in Fe-Cr alloys [J]. Hyperfine Interactions, 1998(112): 139-142.
[20] ZHANG F, HE J, WU Y, et al. Effects of Ni and Al on precipitation behavior and mechanical properties of precipitation-hardened CoCrFeNi high-entropy alloys [J]. Materials Science and Engineering: A, 2022, 839: 142879.
[21] ANTONOV S, HUO J, FENG Q, et al. σ and η Phase formation in advanced polycrystalline Ni-base superalloys [J]. Materials Science and Engineering: A, 2017, 687: 232-240.
[22] YANG T, ZHAO Y L, TONG Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362(6417): 933-937.
[23] HE J Y, WANG H, WU Y, et al. Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys [J]. Intermetallics, 2016, 79: 41-52.
[24] CHOUDHURI D, ALAM T, BORKAR T, et al. Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy [J]. Scripta Materialia, 2015, 100: 36-39.
[25] QI Y, WU Y, CAO T, et al. L21-strengthened face-centered cubic high-entropy alloy with high strength and ductility [J]. Materials Science and Engineering: A, 2020, 797: 140056.
[26] HE J Y, WANG H, WU Y, et al. High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy [J]. Materials Science and Engineering: A, 2017, 686: 34-40.
[27] WANG C, WU Y, GUO Y, et al. Precipitation behavior of sigma phase and its influence on mechanical properties of a Ni-Fe based alloy [J]. Journal of Alloys and Compounds, 2019, 784: 266-275.