电迁移诱导W纳米晶表面原子尺度结构演变
曹海镟#,赵培丽#,贾双凤,郑 赫*,王建波*
(1. 武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室和高等研究院,湖北 武汉 430072;2. 武汉大学科研公共服务条件平台,湖北 武汉 430072)
摘 要 体心立方(BCC)金属W作为微型化器件中重要的互连材料,其电迁移行为对小尺寸集成电路的稳定性至关重要。本文利用原位TEM技术,在原子尺度下研究了电迁移诱导BCC金属W表面结构动态演变过程。结果表明,自由表面是主要电迁移路径;而{110}面和<111>方向分别是优选的迁移面迁移方向;电迁移过程中W表面形成特定的原子台阶或锯齿状结构。对于非低能晶面{002},在电流作用下仍能发生定向迁移,形成新的台阶结构。研究结果揭示了电迁移过程中表面结构的演化规律,为优化BCC金属材料的微观结构设计、提高其在高电流密度环境下的结构性能稳定性提供借鉴。
关键词 电迁移;钨;低能面;表面原子;原位透射电子显微镜
中图分类号:TG115. 21+ 5. 3;O766+. 1;O799;O722+. 4;O739;TN16 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.05.002
Atomic scale surface structure evolution of W nanocrystals induced by electromigration
CAO Haixuan1#, ZHAO Peili1#, JIA Shuangfeng1, ZHENG He1*, WANG Jianbo1,2*
(1. School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan Hubei 430072;
2. Core Facility of Wuhan University, Wuhan Hubei 430072, China)
Abstract Body centered cube (BCC) metal tungsten (W) is a critical interconnect material in miniaturized devices. Its electromigration behavior at the nanoscale significantly affects the stability of integrated circuits. Using in-situ TEM technology, we investigated the dynamic surface structure evolution in W induced by electromigration. The results revealed that the free surface was the primary pathway for electromigration, with a preferential migration direction along the <111> direction within the {110} plane, leading to the formation of specific atomic terraces or zigzag structures. Even on higher-energy crystal planes such as {002}, directional migration persists under the influence of electric current, leading to the development of new terrace structures. These insights into the evolution patterns of surface structures during electromigration provide valuable guidance for optimizing the microstructural design of BCC metallic materials and enhancing their structural performance stability in high-current-density environments.
Keywords electromigration;tungsten;low energy surface;surface atoms;in situ transmission electron microscopy
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] CHOI D, MONECK M, LIU X, et al. Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires [J]. Scientific Reports, 2013, 3(1): 2591.
[2] WANG J, ZENG Z, WEINBERGER C R, et al. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten [J]. Nature Materials, 2015, 14(6): 594-600.
[3] TOKU Y, KIZAWA K, KIMURA Y, et al. Atom rearrangement by cyclic electron “Shaking” [J]. Advanced Engineering Materials, 2023, 25(12): 2300115.
[4] MECKLENBURG M, ZUTTER B T, LING X Y, et al. Visualizing the electron wind force in the elastic regime [J]. Nano Letters, 2021, 21(24): 10172-10177.
[5] SUZUKI Y, KIZUKA T. Structure control of tungsten nanocontacts through pulsed-voltage application [J]. Applied Physics Express, 2018, 11(5): 055202.
[6] LI Z, TIAN Y, TENG C, et al. Recent advances in barrier layer of Cu interconnects [J]. Materials, 2020, 13(21): 5049.
[7] CHOI D, BARMAK K. On the potential of tungsten as next-generation semiconductor interconnects [J]. Electronic Materials Letters, 2017, 13(5): 449-456.
[8] ZHANG J, LI Y, LI X, et al. Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten [J]. Nature Communications, 2021, 12(1): 2218.
[9] STEINHöGL W, STEINLESBERGER G, PERRIN M, et al. Tungsten interconnects in the nano-scale regime [J]. Microelectronic Engineering, 2005, 82(3/4): 266-272.
[10] CHOI D, WANG B, CHUNG S, et al. Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films [J]. Journal of Vacuum Science & Technology A, 2011, 29(5): 051512.
[11] SMITH S, AOUADI K, COLLINS J, et al. Low resistivity tungsten for contact metallization [J]. Microelectronic Engineering, 2005, 82(3/4): 261-265.
[12] VYAS A A, Carbon nanotube interconnects for end-of-roadmap semiconductor technology nodes [D]. America: Santa Clara University, 2016.
[13] GANESH K, GAIDHANE V H. Tungsten as an interconnect mmaterial for next-generation IC design[J].IEEE International Iot, Electronics and Mechatronics Conference, 2020:1-6.
[14] HUANG Y T, HUANG C W, CHEN J Y, et al. Mass transport phenomena in copper nanowires at high current density [J]. Nano Research, 2016, 9(4): 1071-1078.
[15] CHEN K C, WU W W, LIAO C N, et al. Observation of atomic diffusion at twin-modified grain boundaries in copper [J]. Science, 2008, 321(5892): 1066-1069.
[16] CHEN K C, LIAO C N, WU W W, et al. Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy [J]. Applied Physics Letters, 2007, 90(20): 203101.
[17] LIAO C N, CHEN K C, WU W W, et al. In situ transmission electron microscope observations of electromigration in copper lines at room temperature [J]. Applied Physics Letters, 2005, 87(14): 141903.
[18] OH Y-H, KIM S-I, KIM M, et al. Preferred diffusion paths for copper electromigration by in situ transmission electron microscopy [J]. Ultramicroscopy, 2017, 181: 160-164.
[19] ZHAO J, YU R, DAI S, et al. Kinetical faceting of the low index W surfaces under electrical current [J]. Surface Science, 2014, 625: 10-15.
[20] CHEN H P, HUANG C W, WANG C W, et al. Optimization of the nanotwin-induced zigzag surface of copper by electromigration [J]. Nanoscale, 2016, 8(5): 2584-2588.
[21] LEROY F, MüLLER P, MéTOIS J J, et al. Vicinal silicon surfaces: From step density wave to faceting [J]. Physical Review B, 2007, 76(4): 045402.
[22] SHEN F C, HUANG C Y, LO H Y, et al. Atomic-scale investigation of eelectromigration with different drections of electron flow into high-density nanotwinned copper through in situ HRTEM [J]. Acta Materialia, 2021, 219(15): 117250.
[23] 付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, 35(1): 81-89.
[24] 彭开武. FIB/SEM双束系统在微纳米材料电学性能测试中的应用[J]. 电子显微学报, 2016, 35(1): 75-80.
[25] 李雷, 贾双凤, 文广玉,等. 金属氧化物缺陷结构与微观力学形变机制[J]. 电子显微学报, 2020, 39(6): 642-649.
[26] 李佩, 赵培丽, 胡捷, 等. 室温下β-Ga2O3纳米柱的脆韧转变研究[J]. 电子显微学报, 2024, 43(1): 11-17.
[27] ZHAO P, GUAN X, ZHENG H, et al. Surface and strain mediated reversible phase transformation in quantum-confined ZnO nanowires [J]. Physical Review Letters, 2019, 123(21): 216101.
[28] LI L, CHEN G, ZHENG H, et al. Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO [J]. Nature Communications, 2021, 12(1): 3863.
[29] LI X, ZHU Q, HONG Y, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force [J]. Nature Communications, 2022, 13(1): 6503.
[30] LIN S K, LIU Y C, CHIU S J, et al. The electromigration effect revisited: non-uniform local tensile stress-driven diffusion [J]. Scientific Reports, 2017, 7(1): 3082.
[31] BARAKAT F, MARTENS K, PIERRE-LOUIS O. Nonlinear wavelength selection in surface faceting under electromigration [J]. Physical Review Letters, 2012, 109(5): 056101.
[32] TOKTARBAIULY O, USOV V, COILEAIN C O, et al. Step bunching with both directions of the current: Vicinal W(110) surfaces versus atomistic-scale model [J]. Physical Review B, 2018, 97(3): 035436.
[33] VITOS L, RUBAN A V, SKRIVER H L, et al. The surface energy of metals [J]. Surface Science, 1998, 411(1-2): 186-202.
[34] ZHENG P, GALL D. The anisotropic size effect of the electrical resistivity of metal thin films: Tungsten [J]. Journal of Applied Physics, 2017, 122(13): 135301.