ε-Fe2O3/FeO界面结构与相变机理研究
陈珊珊,靳千千,熊 婷,田 敏,姚婷婷,江亦潇,陈春林*,马秀良,叶恒强
(1.中国科学院金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳110016; 2.中国科学技术大学 材料科学与工程学院,辽宁 沈阳110016; 3.广西科技大学 电子工程学院 先进物质结构研究中心 柳州545006; 4.季华实验室,广东 佛山528200; 5.松山湖材料实验室 大湾区显微科学与技术研究中心,广东 东莞523808;6.中国科学院物理研究所,北京 100190)
摘 要 本文利用脉冲激光沉积技术在SrTiO3(111)衬底上生长了ε-Fe2O3薄膜,并应用高分辨X射线衍射(HRXRD)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)对薄膜的显微结构进行了系统表征。XRD和XPS的研究结果表明ε-Fe2O3(001)薄膜在SrTiO3(111)衬底上外延生长,薄膜中Fe离子为+3价。TEM的结果表明,在TEM样品制备过程中,由于高能Ar离子束轰击,ε-Fe2O3/SrTiO3界面上容易发生相变形成FeO。ε-Fe2O3/FeO/ SrTiO3的外延关系为ε-Fe2O3(001)[ ]//FeO(111)[11 ]//SrTiO3(111)[11 ]。基于ε-Fe2O3/FeO界面结构与取向关系,分析了离子束辐照诱导ε-Fe2O3→FeO相变的微观机制。
关键词 ε-Fe2O3;ε-Fe2O3/FeO异质界面;显微结构;相变机制;脉冲激光沉积
中图分类号:O484. 1;O77+1;TB383;TG115. 21+ 5.3 文献标识码:A doi
Study of the ε-Fe2O3/FeO interfacial structure and phase transformation mechanism
CHEN Shanshan1,2,JIN Qianqian3,XIONG Ting4,TIAN Min4,YAO Tingting1,2,JIANG Yixiao1,2,CHEN Chunlin1,2*,MA Xiuliang5,6,YE Hengqiang4
(1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016; 2. School of Material Science and Engineering, University of Science and Technology of China, Shenyang Liaoning 110016; 3. Center for the Structure of Advanced Matter, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou Guangxi 545006;4. Ji Hua Laboratory, Foshan Guangdong 528200; 5. Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan Guangdong 523808; 6.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
Abstract In this study, ε-Fe2O3 thin films were grown on SrTiO3 (111) substrates using pulsed laser deposition. The microstructure of ε-Fe2O3 thin films was systematically investigated through high-resolution X-ray diffraction,X-ray photoelectron spectroscopy andtransmission electron microscopy. The XRD and XPS results confirmed that high-purity ε-Fe2O3 (001) thin films were epitaxially grown on the SrTiO3 (111) substrates, with Fe ions in the +3 valence state. TEM characterization revealedthat the phase transformation from ε-Fe2O3 to FeO readily occurred at the ε-Fe2O3/SrTiO3 interface, likely due to high-energy Ar beam irradiation during sample preparation. The epitaxial orientation relationship among ε-Fe2O3, FeO and SrTiO3 was identified as Fe2O3 (001) [ ] // FeO (111) [11 ] // SrTiO3 (111) [11 ]. Based on the results of the interfacial structure and orientation relationship, the mechanism of the ε-Fe2O3 →FeO phase transformation was discussed.
Keywords ε-Fe2O3; ε-Fe2O3/FeO heterointerface; microstructure; phase transition mechanism; pulsed laser deposition
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] HUANG W C, YANG S W, LI X G. Multiferroic heterostructures and tunneling junctions[J]. Journal of Materiomics, 2015, 1(4): 263-284.
[2] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426(6962): 55-58.
[3] 陈双杰, 唐云龙, 朱银莲, 等. 类四方BiFeO3薄膜中新型极化拓扑结构研究[J]. 电子显微学报, 2023, 42(4): 424-432.
[4] LOTTERMOSER T, LONKAI T, AMANN U, et al. Magnetic phase control by an electric field[J]. Nature, 2004, 430(6999): 541-544.
[5] WANG L F, FENG Q Y, KIM Y K, et al. Ferroelectrically tunable magnetic Skyrmions in ultrathin oxide heterostructures[J]. Nature Materials, 2018, 17(12): 1087-1094.
[6] RADAELLI G, PETTI D, PLEKHANOV E, et al. Electric control of magnetism at the Fe/BaTiO3 interface[J]. Nature Communications, 2014, 5(1): 3404.
[7] WANG H, DAI Y Y, LIU Z R, et al. Overcoming the limits of the interfacial Dzyaloshinskii–Moriya interaction by antiferromagnetic order in multiferroic heterostructures[J]. Advanced Materials, 2020, 32(14): 1904415.
[8] GICH M, FINA I, MORELLI A, et al. Multiferroic iron oxide thin films at room temperature[J]. Advanced Materials, 2014, 26:4645-4652.
[9] GUAN X X, YAO L, RUSHCHANSKII K Z, et al. Unconventional ferroelectric switching via local domain wall motion in multiferroic ε-Fe2O3 films[J]. Advanced Electronic Materials, 2020, 6(4): 1901134.
[10] DING Y, MORBER J R, SNYDER R L, et al. Nanowire structural evolution from Fe3O4 to ε-Fe2O3 [J]. Advanced Functional Materials, 2007, 17(7): 1172-1178.
[11] WANG Y Z, WANG P, WANG H, et al. Room‐temperature magnetoelectric coupling in atomically thinε-Fe2O3 [J]. Advanced Materials, 2023, 35(7): 2209465.
[12] TRONC E, CHANÉAC C, JOLIVET J P. Structural and magnetic characterization of ε-Fe2O3[J]. Journal of Solid State Chemistry, 1998, 139(1): 93-104.
[13] GICH M, FRONTERA C, ROIG A, et al. High-and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties[J]. Chemistry of Materials, 2006, 18(16): 3889-3897.
[14] OHKOSHI S, TOKORO H. Hard magnetic ferrite: ε-Fe2O3[J]. Bulletin of the Chemical Society of Japan, 2013, 86(8): 897-907.
[15] ZHANG Y, WANG H, TACHIYAMA K, et al. Single-crystal synthesis of ε-Fe2O3-type oxides exhibiting room-temperature ferrimagnetism and ferroelectric polarization[J]. Crystal Growth & Design, 2021, 21(9): 4904-4908.
[16] VIET V Q, ADEYEMI S Y, SON W H, et al. Specific domain pattern of ε-Fe2O3 thin films grown on yttrium-stabilized zirconia (100) as a nucleation site for α-Fe2O3[J]. Crystal Growth & Design, 2018, 18(6): 3544-3548.
[17] AMRILLAH T, QUYNH L T, NGUYEN V C, et al. Flexible epsilon iron oxide thin films[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 17006-17012.
[18] SUN Z Y, CHEN S S, JIANG Y X, et al. Interfacial structure and magnetic coupling at Fe3O4/FeO (001) and (111) interfaces[J]. Physical Review B, 2024, 109(9): 094405.
[19] HAMED M H, MUELLER D N, MÜLLER M. Thermal phase design of ultrathin magnetic iron oxide films: From Fe3 O4 toγ-Fe2O3 and FeO[J]. Journal of Materials Chemistry C, 2020, 8(4): 1335-1343.
[20] SWIATKOWSKA-WARKOCKA Z, KAWAGUCHI K, WANG H Q, et al. Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation[J]. Nanoscale Research Letters, 2011, 6: 1-7.
[21] LAK A, KRAKEN M, LUDWIG F, et al. Size dependent structural and magnetic properties of FeO–Fe3O4 nanoparticles[J]. Nanoscale, 2013, 5(24): 12286-12295.
[22] 高春阳, 姚婷婷, 江亦潇, 等. Fe3O4外延薄膜的制备与显微结构表征[J]. 电子显微学报, 2022, 41(2): 105-110.
[23] 乔贝贝, 姚婷婷, 江亦潇, 等. LaTiO3外延薄膜的显微结构与电学性能研究[J]. 电子显微学报, 2022, 41(4): 407-412.
[24] RADU T, IACOVITA C, BENEA D, et al. X-ray photoelectron spectroscopic characterization of iron oxide nanoparticles[J]. Applied Surface Science, 2017. 405: 337-343.
[25] 李想, 姚婷婷, 江亦潇, 等. 两种衬底上Cr2O3薄膜的制备与显微结构表征[J]. 电子显微学报, 2022, 41(4): 393-398.
[26] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008. 254(8): 2441-2449.
[27] GICH M, GAZQUEZ J, ROIG A, et al. Epitaxial stabilization of ε- Fe2O3 (00l) thin films on SrTiO3(111)[J]. Applied Physics Letters, 2010, 96(11).
[28] ZHANG Q, ZHANG L Y, JIN C H, et al. CalAtom: A software for quantitatively analysing atomic columns in a transmission electron microscope image[J]. Ultramicroscopy, 2019, 202: 114-120.
[29] ROJAC T, BENCAN A, DRAZIC G, et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects[J]. Nature Materials, 2017, 16(3): 322-327.
[30] SÁNCHEZ-SANTOLINO G, ROUCO V, PUEBLA S, et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers[J]. Nature, 2024, 626(7999): 529-534.
[31] GARVIE L A J, CRAVEN A J, BRYDSON R. Use of electron-energy loss near-edge fine structure in the study of minerals[J].American Mineralogist, 1994, 79(5-6): 411-425.