表层氧化对单晶铁薄膜电子磁手性二向色性谱的影响研究
曾志欣,胡绮雯,李建军,符潇潇*,黄晓旭*
(1.重庆大学材料科学与工程学院轻合金材料国际合作联合实验室,重庆400044;
2.重庆大学电子显微镜中心,重庆400044)
摘 要 电子磁手性二向色性技术(EMCD)是一种基于透射电镜电子能量损失谱(EELS)的磁表征技术,可实现亚纳米级高空间分辨、元素分辨的局域轨道自旋磁矩定量测量。本文以单晶铁薄膜为例研究了金属透射样品表面氧化对EMCD信号的影响。在Fe/MgO(001)薄膜的平面样品中,从不同区域中提取一系列低能损失谱、Fe-L2,3峰常规在轴芯能级损失谱和动量转移矢量分辨的离轴芯能级损失谱(q-EELS)。结合低能损失谱和常规在轴芯能级损失谱,可合理忽略所选区域的复散射,且发现样品靠近孔洞边缘的区域较其他区域而言存在更为严重的氧化情况。表层氧化物相对含量的增加导致所选数据中常规在轴芯能级损失谱以及动量转移矢量分辨离轴芯能级损失谱的白线比值均呈单调递增趋势,这种现象原理上会导致从EMCD谱中提取的轨道-自旋磁矩比值的偏差相对递增。此外,作者还发现样品表层氧化、非晶化、样品弯曲效应和外延质量等因素综合引起了实验中局部衍射条件的轻微不规则变化,这些因素同样对EMCD定量的结果有较大的影响,最终导致所观测区域EMCD谱中实际提取的轨道-自旋磁矩比值呈不规则变化。本工作建议在进行易氧化金属的EMCD实验时,可预先进行会聚束辐照以降低表层氧化物厚度,并注意关注衍射条件的细微变化。
关键词 EMCD;表层氧化;复散射;动量分辨芯能级损失谱
中图分类号:TG115;TM27;TB43 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.05.008
Influence of surface oxidation on the electron magnetic chiral dichroism of single-crystalline iron thin films
ZENG Zhixin1, HU Qiwen1, LI Jianjun 1, FU Xiaoxiao1,2*, HUANG Xiaoxu1,2*
(1. International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044; 2. Electron Microscopy Center, Chongqing University, Chongqing 400044, China)
Abstract Electron magnetic chiral dichroism (EMCD) is a magnetic characterization technique based on the electron energy loss spectroscopy (EELS) in transmission electron microscopy. It enables quantitative measurement of local orbital spin magnetic moments with sub-nanometer spatial resolution and elemental resolution. This paper used a single-crystal iron thin film to study the effect of surface oxidation on the EMCD signal in metal transmission samples. In the planar sample of the Fe/MgO (001) thin film, a series of low-energy loss spectra, Fe-L2,3 edge spectra, and momentum transfer q-resolved off-axis core loss spectra (q-EELS) were extracted from different areas. By combining the low-energy loss spectra and the conventional on-axis core loss spectra, complex scattering in the selected areas was reasonably neglected. Areas near the edges of the holes in the sample exhibited more severe oxidation compared to other areas. The increase in the relative content of surface oxides led to a monotonic increase in the white line ratio in both the conventional on-axis core loss spectra and the momentum transfer vector-resolved off-axis core loss spectra in the selected data. Theoretically, this would cause a relative increase in the deviation of the orbital-spin magnetic moment ratio extracted from the EMCD spectra. In addition, factors such as surface oxidation, amorphization, sample bending effects, and epitaxial quality of the sample collectively contributed to slight irregular changes in local diffraction conditions during the experiment, significantly impacting the quantitative results of EMCD. Ultimately these factors led to irregular changes in the actual orbital-spin magnetic moment ratio extracted from the EMCD spectra of the observed areas. This work suggests that in EMCD experiments involving oxidizable metals, pre-irradiation with a convergent beam can reduce the thickness of surface oxides. Furthermore, attention should be paid to subtle changes in diffraction conditions.
Keywords EMCD;surface oxidation;plural scattering;q-EELS
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] SCHATTSCHNEIDER P, RUBINO S, HÉBERT C, et al. Detection of magnetic circular dichroism using a transmission electron microscope[J]. Nature, 2006, 441(7092): 486-488.
[2] RUSZ J, MUTO S, SPIEGELBERG J, et al. Magnetic measurements with atomic-plane resolution[J]. Nature Communications, 2016, 7(1): 1-7.
[3] SONG D, WANG Z, ZHU J. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope[J]. Ultramicroscopy, 2019, 201: 1-17.
[4] ALI H, RUSZ J, WARNATZ T, et al. Simultaneous mapping of EMCD signals and crystal orientations in a transmission electron microscope[J]. Scientific Reports, 2021, 11(1): 2180.
[5] ALI H, NEGI D, WARNATZ T, et al. Atomic resolution energy-loss magnetic chiral dichroism measurements enabled by patterned apertures[J]. Physical Review Research, 2020, 2(2): 023330.
[6] GRILLO V, HARVEY T R, VENTURI F, et al. Observation of nanoscale magnetic fields using twisted electron beams[J]. Nature Communications, 2017, 8(1): 689.
[7] SCHATTSCHNEIDER P, ENNEN I, STÖGER-POLLACH M, et al. Real space maps of magnetic moments on the atomic scale: Theory and feasibility[J]. Ultramicroscopy, 2010, 110(8): 1038-1041.
[8] RUSZ J, IDROBO J, BHOWMICK S. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe[J]. Physical Review Letters, 2014, 113(14): 145501.
[9] LIDBAUM H, RUSZ J, LIEBIG A, et al. Quantitative magnetic information from reciprocal space maps in transmission electron microscopy[J]. Physical Review Letters, 2009, 102(3): 037201.
[10] FU X, WAROT-FONROSE B, ARRAS R, et al. Quantitative moment study and coupling of 4f rare earth and 3d metal by transmitted electrons[J]. Physical Review B, 2016, 94(14): 140416.
[11] WANG Z, ZHONG X, YU R, et al. Quantitative experimental determination of site-specific magnetic structures by transmitted electrons[J]. Nature Communications, 2013, 4(1): 1395.
[12] WAROT-FONROSE B, GATEL C, CALMELS L, et al. Effect of spatial and energy distortions on energy-loss magnetic chiral dichroism measurements: Application to an iron thin film[J]. Ultramicroscopy, 2010, 110(8): 1033-1037.
[13] MUTO S, RUSZ J, TATSUMI K, et al. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism[J]. Nature Communications, 2014, 5(1): 3138.
[14] An in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons [J]. Nature Communication, 2017, 8: 15348.
[15] WANG Z, TAVABI A, JIN L, et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy[J]. Nature Materials, 2018, 17(3): 221-225.
[16] SONG D, DUNIN-BORKOWSKI R. Three-dimensional measurement of magnetic moment vectors using electron magnetic chiral dichroism at atomic scale[J]. Physical Review Letters, 2021, 127(8): 087202.
[17] XU K, LIN T, RAO Y, et al. Direct investigation of the atomic structure and decreased magnetism of antiphase boundaries in garnet[J]. Nature Communications, 2022, 13(1): 3206.
[18] CHEN X, HIGASHIKOZONO S, ITO K, et al. Nanoscale measurement of giant saturation magnetization in α ″-Fe16N2 by electron energy-loss magnetic chiral dichroism[J]. Ultramicroscopy, 2019, 203: 37-43.
[19] RUSZ J, LIDBAUM H, RUBINO S, et al. Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements[J]. Physical Review B, 2011, 83(13): 132402.
[20] ZENG Z, FU X, HU Q, et al. The influence of residual plural scattering after deconvolution in electron magnetic chiral dichroism[J]. Ultramicroscopy, 2023, 253: 113806.
[21] HU Q, FU X, ZENG Z, et al. Electron knock-on damage effects on electron magnetic chiral dichroism of magnetic metals using cobalt as a model[J]. Applied Physics Letters, 2024, 124(9):092407.
[22] WAROT-FONROSE B, HOUDELLIER F, HӰTCH M, et al. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique[J]. Ultramicroscopy, 2008, 108(5): 393-398.
[23] LI G, SONG D, LI Z, et al. Noise-dependent bias in quantitative STEM-EMCD experiments revealed by bootstrapping determination of magnetic parameters in La0.7Sr0.3MnO3/SrTiO3 thin films using EMCD[J]. Applied Physics Letters, 2016, 108(24): 242414.
[24] LOUKYA B, ZHANG X, GUPTA A, et al. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(22): 3754-3761.
[25] SPIEGELBERG J, IDROBO J C, HERKLOTZ A, et al. Local low rank denoising for enhanced atomic resolution imaging[J]. Ultramicroscopy, 2018, 187: 34-42.
[26] CALMELS L, HOUDELLIER F, WAROT-FONROSE B, et al. Experimental application of sum rules for electron energy loss magnetic chiral dichroism[J]. Physical Review B, 2007, 76(6): 060409.
[27] TAN H, VERBEECK J, ABAKUMOV A, et al. Oxidation state and chemical shift investigation in transition metal oxides by EELS[J]. Ultramicroscopy, 2012, 116: 24-33.
[28] WANG C, BAER D, THOMAS L, et al. Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature[J]. Journal of Applied Physics, 2005, 98(9): 094308.
[29] RUSZ J, LIDBAUM H, LIEBIG A, et al. Quantitative magnetic measurements with transmission electron microscope[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(9/10/11/12): 1478-1480.
[30] SONG D, WANG Z, ZHU J. Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals[J]. Ultramicroscopy, 2015, 148: 42-51.
[31] SPARROW T, WILLIAMS B, RAO C, et al. L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides[J]. Chemical Physics Letters, 1984, 108(6): 547-550.
[32] COSANDEY F, SU D, SINA M, et al. Fe valence determination and Li elemental distribution in lithiated FeO0.7F1.3/C nanocomposite battery materials by electron energy loss spectroscopy (EELS)[J]. Micron, 2012, 43(1): 22-29.
[33] THERSLEFF T, RUSZ J, HJÖRVARSSON B, et al. Detection of magnetic circular dichroism with subnanometer convergent electron beams[J]. Physical Review B, 2016, 94(13): 134430.
[34] SCHMID H, MADER W. Oxidation states of Mn and Fe in various compound oxide systems[J]. Micron, 2006, 37(5): 426-432.
[35] 符潇潇, 胡绮雯, 吴楷, 等. 双层异质晶体结构的电子磁手性二向色性谱解析[J].电子显微学报, 2023, 42(6):689-696.
[36] Electron energy-loss magnetic chiral dichroism of magnetic iron film affected by an underlayer in a double-layer structure[J]. Applied Physics Letters, 2019, 115(11): 112401.