一种强化汽车铝合金析出相的原子分辨电子显微学和谱学研究
胡谢君,李婷玉,赖玉香*,陈江华*
(1. 湖南大学材料科学与工程学院高分辨电镜中心,湖南长沙410082;2. 海南大学精密仪器高等研究中心,海洋材料表征技术创新研究院,皮米电镜中心,海南海口570228;3. 海南大学海南省皮米电子显微学重点实验室,海南海口570228)
摘 要 原子分辨率的电子显微学和谱学技术是研究析出强化铝合金微结构的最有力的手段和方法,特别是原子分辨率的EDS能谱成像技术为更深入地研究和认识铝合金中的析出强化相颗粒结构及其与铝基体的界面匹配关系至关重要。然而,迄今以前,对于汽车轻量化用Al-Mg-Si合金中Mg、Si合金元素的亚稳析出聚集颗粒,原子分辨率的EDS能谱成像很难实现。本工作首次报道对汽车用Al-Mg-Si合金中轻质Mg、Si元素的析出颗粒成功实现原子分辨率的EDS能谱成像的案例。作者利用最先进的透射电子显微镜技术研究了一种典型汽车用Al-Mg-Si合金在250 ℃时效强化过程中工艺-微结构-性能的演变关系。研究结果表明,富Mg合金在高温峰值时效阶段析出相的主要类型为ꞵ'相(Mg9Si5)。通过先进原子分辨率的能谱成像揭示了ꞵ'相与Al基体界面层的精细原子结构和元素分布。ꞵ'相颗粒最外层总是以Mg原子层对接Al基体,这有助于帮助理解析出相界面能问题。本文的研究结果清楚解答了该合金硬度和屈服强度均得到显著提升的微结构原因。
关键词 Al-Mg-Si合金;原子分辨能谱成像;析出相;电子显微学
中图分类号:TG146.21;TG115.21+5.3 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.05.007
Molecular dynamics simulation of the effect of temperature on the tensile plastic deformation of Au nanowires
LIAN Huibin1, WANG Zhanxin1, ZHAI Yadi1*, WANG Lihua1*, HAN Xiaodong1,2*
(1. Beijing Key Laboratory of Advanced Materials Microstructure and Properties, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124;2. Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen Guangdong 518000, China)
Abstract Small-sized gold (Au) nanowires have garnered significant attention due to their excellent mechanical properties. However, most previous studies have focused on room temperature, with limited research exploring their behavior at low temperatures. Investigating the plastic deformation behavior of gold nanowires at low temperatures can provide a theoretical foundation for their applications in such environments. In this paper, molecular dynamics simulations were employed to examine the mechanical behavior of rhombic Au nanowires across different temperatures. The study revealed that the strength and plastic deformation capability of Au nanowires increased as the temperature decreased. Moreover, the plastic deformation mechanism of Au nanowires underwent a temperature-dependent transition. In the temperature rangeof 175 K to 350 K, the plastic deformation mechanism was primarily governed by the emission of Shockley partial dislocation, which led to the generation of numerous stacking fault within the nanowires, followed by shear and premature necking. At lower temperatures, ranging from 50 K to 140 K, the mechanism shifted to partial dislocation emission, initially forming smooth twin boundaries and undergoing migration. This was followed by the formation of intersecting twin boundaries, which continued to migration. This process generated a substantial amount of twinning and resulted in superplastic deformation of up to 40.16 %.
Keywords molecular dynamics simulation; Au nanowires; plastic deformation; twins; Face-centered cubic metal
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] SONG M, KOBAYASHI E, KIM J. Clustering evolution during low temperature aging and thermal stability during two-step aging in Al-Mg-Si alloys[J]. J Alloys Compd, 2023, 946:169291.
[2] EDWARDS G A, STILLER K, DUNLOP G L, et al. The precipitation sequence in Al–Mg–Si alloys[J]. Acta Mater, 1998, 46(11):3893-3904.
[3] MARIOARA C D, ANDERSEN S J, JANSEN J, et al. The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy[J]. Acta Mater, 2003, 51(3):789-796.
[4] 范唯, 向雪梅, 雷潘敏, 等. Mg/Si比对Al-Mg-Si-Zn合金自然时效效应的影响[J]. 电子显微学报, 2023, 42(6):731-739.
[5] ZANDBERGEN H W, ANDERSEN S J, JANSEN J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies[J]. Science, 1997, 277(5330):1221-1225.
[6] ANDERSEN S J, MARIOARA C D, FRøSETH A, et al. Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases[J]. Mater Sci Eng A, 2005, 390(1):127-138.
[7] RAVI C, WOLVERTON C M. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates[J]. Acta Mater, 2004, 52(14):4213-4227.
[8] CHEN J H, COSTAN E, VAN HUIS M A, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys[J]. Science, 2006, 312(5772):416-419.
[9] VISSERS R, VAN HUIS M A, JANSEN J, et al. The crystal structure of the β′ phase in Al–Mg–Si alloys[J]. Acta Mater, 2007, 55(11):3815-3823.
[10] KUMAR N. Hardness measurement of Al-Mg-Si alloy: Experimentation and theoretical validation[J]. MMA, 2022, 11(3):467-471.
[11] MATSUDA K, SAKAGUCHI Y, MIYATA Y, et al. Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy[J]. J Mater Sci, 2000, 35(1):179-189.
[12] JACOBS M H. The structure of the metastable precipitates formed during aging of an Al-Mg-Si alloy[J]. Philos Mag, 1972, 26(1):1-13.
[13] BIROL Y. Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy[J]. Mater Sci Eng A, 2005, 391(1):175-180.
[14] ABID T, BOUBERTAKH A, HAMAMDA S. Effect of pre-aging and maturing on the precipitation hardening of an Al–Mg–Si alloy[J]. J Alloys Compd, 2010, 490(1):166-169.
[15] ZHEN L, KANG S B. The effect of pre-aging on microstructure and tensile properties of Al-Mg-Si alloys[J]. Scr Mater, 1997, 36(10):1089-1094.
[16] 冯佳妮, 陈江华, 刘春辉, 等. 预时效对6016铝合金烤漆前后组织和性能的影响[J]. 电子显微学报, 2012, 31(6):461-468.
[17] 龚小康, 袁欣, 席海辉, 等. 时效温度和Ag对Al-Zn-Mg合金力学性能与微观结构的影响[J]. 电子显微学报, 2023, 42(2):143-152.
[18] POGATSCHER S, ANTREKOWITSCH H, LEITNER H, et al. Mechanisms controlling the artificial aging of Al–Mg–Si Alloys[J]. Acta Mater, 2011, 59(9):3352-3363.
[19] LAI Y X, FAN W, YIN M J, et al. Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys[J]. J Mater Sci Technol, 2020, 41:127-138.
[20] 赖玉香. Al-Mg-Si合金时效析出行为的透射电镜研究[D]. 长沙:湖南大学, 2019.
[21] 姜冰灿. 预变形和预时效对Al-Mg-Si合金自然时效以及后续人工时效的影响[D]. 长沙:湖南大学, 2018.
[22] VAN HUIS M A, CHEN J H, ZANDBERGEN H W, et al. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution[J]. Acta Mater, 2006, 54(11):2945-2955.
[23] HU X J, LI T Y, LAI Y X, et al. Hardness reversal in severely deformed automotive Al-Mg-Si alloys[J]. J Alloys Compd, 2024, 978:173515.
[24] CHANG C S T, BANHART J. Low-temperature differential scanning calorimetry of an Al-Mg-Si alloy[J]. Metall Mater Trans A,2011, 42(7):1960-1964.
[25] SHEN C H. Pre-treatment to improve the bake-hardening response in the naturally aged Al-Mg-Si alloy[J]. J Mater Sci Technol, 2011, 27(3):205-212.
[26] 郑雄, 赖玉香, 向雪梅, 等. 稀土元素La对AlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1):107-116.