NiO外延薄膜的显微结构与光学、电学性能研究
范一丹,闫学习,田 敏,姚婷婷,江亦潇,杨志卿,陈春林*,马秀良,叶恒强
(1.东北大学 材料科学与工程学院 辽宁 沈阳110016; 2.中国科学院金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳110016; 3.中国科学技术大学 材料科学与工程学院,辽宁 沈阳110016; 4.季华实验室,广东 佛山528200; 5.松山湖材料实验室 大湾区显微科学与技术研究中心,广东 东莞523808;6.中国科学院物理研究所,北京100190)
摘 要 本文利用脉冲激光沉积技术在MgO(100)和Al2O3(0001)衬底上生长了NiO薄膜,并应用高分辨X射线衍射仪、X射线光电子能谱仪和透射电子显微镜表征了两种薄膜的物相、化学成分和显微结构。结果表明,MgO衬底上的NiO薄膜为单晶外延薄膜,薄膜内部存在位错和由衬底扩散来的Mg元素,Al2O3衬底上的NiO薄膜为多晶外延薄膜。采用霍尔效应测试系统和紫外分光光度计测量了NiO薄膜的电阻、可见透射率和能隙。结果表明,单晶NiO薄膜具有较低的电阻,更高的可见光透过率和更大的能隙。本研究表明可以通过选择不同的衬底来调控NiO薄膜的显微结构、光学和电学性质。
关键词 NiO;脉冲激光沉积;透射电子显微学;霍尔效应;物理性能
中图分类号:O43;O47;O76;O77;TG115. 2 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.05.005
The microstructure, optical and electrical properties of NiO epitaxial thin films
FAN Yidan1,2, YAN Xuexi2,3, TIAN Min4, YAO Tingting2,3, JIANG Yixiao2,3, YANG Zhiqing4,
CHEN Chunlin2,3*, MA Xiuliang5,6, YE Hengqiang4
(1. School of Materials Science and Engineering, Northeastern University, Shenyang Liaoning 110016; 2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016; 3. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang Liaoning 110016; 4. Jihua Laboratory, Foshan Guangdong 528200; 5. Bay Area Center for Electron Microscopy,Songshan Lake Materials Laboratory,Dongguan Guangdong 523808; 6. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
Abstract NiO thin films were grown on MgO (100) and Al2O3 (0001) substrates using pulsed laser deposition. The phase, chemical composition, and microstructure of the two types of NiO films were characterized by high-resolution X-ray diffraction (HRXRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results revealed that the NiO film on the MgO substrate was a single-crystal epitaxial film, with dislocations and Mg elements diffusing from the substrate into the film. In contrast, the NiO film on the Al2O3 substrate was a polycrystalline epitaxial film. The sheet resistance, visible transmittance, and band gap of the NiO thin films were measured using a Hall effect test system and a UV spectrophotometer. The findings indicated that the single-crystal NiO thin film exhibited lower sheet resistance, higher visible light transmittance, and a larger band gap. This study demonstrates that the microstructure, as well as the optical and electrical properties of NiO thin films, can be tailored by selecting different substrates.
Keywords NiO; pulsed laser deposition; transmission electron microscopy; Hall-effect; physical properties
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] JOSHI U S, MATSUMOTO Y, ITAKA K, et al. Combinatorial synthesis of Li-doped NiO thin films and their transparent conducting properties[J]. Applied Surface Science, 2006, 252(7): 2524-2528.
[2] CHU X, LENG J, LIU J,et al. Effect of annealing conditions on the structural, electrical and optical properties of Li-doped NiO thin films[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6408-6412.
[3] MICHEL J, SPLITH D, ROMBACH J, et al. Processing strategies for high-performance Schottky contacts on n-type oxide semiconductors: Insights from In2O3[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27073-27087.
[4] WANG J, CHANG J, KANG S, et al. The origin of the n-type conductivity for Ta-doped SnO2: Density functional theory study[J]. Materials Today Communications, 2023, 37: 107632.
[5] ZHANG J, HAN S, LUO W, et al. Interface energy band alignment at the all-transparent p-n heterojunction based on NiO and BaSnO 3[J]. Applied Physics Letters, 2018, 112(17): 171605.
[6] SHEN Y, YAN X, BAI Z, et al. A self-powered ultraviolet photodetector based on solution-processedp-NiO/n-ZnO nanorod array heterojunction[J]. RSC Advances, 2015, 5(8): 5976-5981.
[7] 杨铭. NiO基p型透明导电氧化物薄膜及其二极管的研究[D]. 上海: 复旦大学, 2011.
[8] NAPARI M, HUQ T N, HOYE R L Z, et al. Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next‐generation rigid and flexible device applications[J]. InfoMat, 2021, 3(5): 536-576.
[9] NAIL B A, FIELDS J M, ZHAO J, et al. Nickel oxide particles catalyze photochemical hydrogen evolution from water—nanoscaling promotes p-type character and minority carrier extraction[J]. ACS Nano, 2015, 9(5): 5135-5142.
[10] GÓMEZ-ABAL R, NEY O, SATITKOVITCHAI K, et al. All-optical subpicosecond magnetic switching in NiO(001)[J]. Physical Review Letters, 2004, 92(22): 227402.
[11] AVENDAO E, AZENS A, NIKLASSON G A, et al. Electrochromism in nickel oxide films containing Mg, Al, Si, V, Zr, Nb, Ag, or Ta[J]. Solar Energy Materials and Solar Cells, 2004, 84(1): 337-350.
[12] SUGIYAMA I, SHIBATA N, WANG Z, et al. Ferromagnetic dislocations in antiferromagnetic NiO[J]. Nature Nanotechnology, 2013, 8(4): 266-270.
[13] GONG Y, ZHANG S, GAO H, et al. Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices[J]. Sustainable Energy & Fuels, 2020, 4(9): 4415-4458.
[14] HU S, YANG H, TANG M, et al. Current‐induced planar resistive switching mediated by oxygen migration in NiO/Pt bilayer[J]. Advanced Electronic Materials, 2020, 6(10): 2000584.
[15] 祁红艳, 祁亚军, 卢朝靖. β-Ni(OH)2和NiO单晶纳米结构的水热合成与TEM表征[J]. 电子显微学报, 2007, 26(3): 179-183.
[16] 严雪, 路璐, 王建波. Ni(SO4)0.3(OH)1.4纳米带与NiO纳米颗粒晶体学取向关系的电子显微学研究[J]. 电子显微学报,
2012, 31(5): 398-405.
[17] LEE J H, KWON Y H, KONG B H, et al. Biepitaxial growth of high-quality semiconducting NiO thin films on (0001) Al2O3 substrates: Microstructural characterization and electrical properties[J]. Crystal Growth & Design, 2012, 12(5): 2495-2500.
[18] LIANG J W, LI K H, KANG C H, et al. Characterization of epitaxial titanium nitride mediated single-crystal nickel oxide grown on MgO-(100) and Si-(100)[J]. AIP Advances, 2020, 10(6): 065318.
[19] NISHIMOTO K, SHIMA K, CHICHIBU S F, et al. Reactive RF magnetron sputtering epitaxy of NiO thin films on (0001) sapphire and (100) MgO substrates[J]. Japanese Journal of Applied Physics, 2022, 61(2): 025505.
[20] YAMAUCHI R, HAMASAKI Y, SHIBUYA T, et al. Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates[J]. Scientific Reports, 2015, 5(1): 14385.
[21] 乔贝贝, 姚婷婷, 江亦潇, 等. LaTiO_(3)外延薄膜的显微结构与电学性能研究[J]. 电子显微学报, 2022, 41(4): 407-412.
[22] AFTAB M, BUTT M Z, ALI D, et al. Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis[J]. Optical Materials, 2021, 119: 111369.
[23] YU X, ZHAO J, ZHENG L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or Beta-nickel hydroxide on the surface of platinum?[J]. ACS Energy Letters, 2018, 3(1): 237-244.
[24] LIU W, LU C, WANG X, et al.In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage[J]. Journal of Materials Chemistry A, 2015, 3(2): 624-633.
[25] BEN AMOR M, BOUKHACHEM A, BOUBAKER K, et al. Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications[J]. Materials Science in Semiconductor Processing, 2014, 27: 994-1006.
[26] HUANG L, WANG Y, ZHU X, et al. Mg-doped nickel oxide as efficient hole-transport layer for perovskite photodetectors[J]. The Journal of Physical Chemistry C, 2021,125(29):16066–16074.
[27] YAN X, JIANG Y, YANG B,et al. Tunable band gap of diamond twin boundaries by strain engineering[J]. Carbon, 2022, 200:483-490.