四方铁电体顶点畴的原子尺度构型研究
吕晓东,刘嘉琦,唐云龙*,朱银莲*,马秀良
(1.中国科学院金属研究所 沈阳材料科学国家研究中心,辽宁 沈阳110016;2.中国科学技术大学 材料科学与工程学院,辽宁 沈阳 110016;3. 松山湖材料实验室 大湾区显微科学与技术研究中心,广东 东莞523808;4. 湖南科技大学 材料科学与工程学院,湖南 湘潭 411201; 5.粤港澳大湾区量子科学中心, 深圳 518000; 6.中国科学院物理研究所,北京 100190)
摘 要 结合精密脉冲激光沉积和原子级分辨率透射电子显微镜技术,本文研究了拉应变下外延生长的PbTiO3/SrTiO3多层薄膜中灵活多变的畴组态,分析了不同类型畴在交汇顶点构成的新型顶点畴及其极化组态。这些顶点畴可能与薄膜中新型极化拓扑构型(通量全闭合畴、涡旋畴)的形成有密切关系,并对未来构建新的极化拓扑结构有所启发。部分顶点畴同时与薄膜中存在的各类型带电畴壁相互作用,这些新型极化组态对薄膜的铁电性和导电性能等都有重要影响,为研究与器件相关的界面等问题提供了重要思路。
关键词 铁电薄膜;畴结构;顶点畴;PbTiO3
中图分类号:TB383;O77;TG115. 21+ 5.3 文献标识码:A
Atomic-scale observation of domain vertex in ferroelectric films
LÜ Xiaodong1,2, LIU JiaQi1,2, TANG Yunlong1,2*, ZHU Yinlian3,4*, MA Xiuliang3,5,6
(1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang Liaoning 110016; 2. School of Material Science and Engineering, University of Science and Technology of China, Shenyang Liaoning 110016; 3. Bay Area Center for Electron Microscopy, Songshan Lake Materials Laboratory, Dongguan Guangdong 523808; 4. School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan Hunan, 411201; 5. Quantum Science Center of Guangdong-HongKong-Macau Greater Bay Area, Shenzhen Guangdong 518000; 6. Institute of Physics, Chinese Academy of Sciences, Beijing 100190,China)
Abstract Due to their exceptional dielectric, piezoelectric, and ferroelectric properties, ferroelectric materials hold significant potential for various applications across diverse fields. The discovery of ferroelectric topological structures has significantly enhanced the density of ferroelectric memory devices. Investigating the intricate formation mechanisms of these topological structures is crucial for understanding and constructing novel types of such structures. This study examined the flexible domain configurations in epitaxially grown PbTiO3/SrTiO3 multilayer films under tensile strain using precision pulsed laser deposition and atomic resolution transmission electron microscopy in this study. These vertex domains may be closely associated with the emergence of novel polarization topologies, such as flux-fully closed domains and vortex domains, in thin films, offering inspiration for future designs of polarization topologies. Additionally, certain vertex domains simultaneously interact with various types of charged domain walls within the thin films, significantly affecting the ferroelectric and conductive properties of these films. This finding provides valuable insights into interface-related issues concerning devices.
Keywords ferroelectric thin films; domain structure; domain vertex; PbTiO3
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] SPALDIN N, CHEONG S W, RAMESH R. Multiferroics: Past, present, and future [J]. MRS Bulletin, 2017, 42: 385-390.
CATALAN, SCOTT J F. Physics and applications of bismuth ferrite [J]. Advanced Materials, 2009, 21(24): 2463-2485.
[2] 冯燕朋, 朱银莲, 唐云龙, 等. PbTiO3/SrTiO3 (001)复杂畴组态和缺陷的研究[J].电子显微学报, 2018, 37(6): 556-562.
[3] 唐云龙, 王宇佳, 朱银莲, 等.铁性氧化物界面应变耦合诱导极化拓扑结构[J].电子显微学报, 2022, 41(5): 520-527.
[4] Liu Y, Wang Y J, Zhu Y L,et al. Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth [J]. Nano Letters, 2017, 17 (12): 7258-7266.
[5] Li S, Zhu Y L, Wang Y J,et al. Periodic arrays of flux-closure domains in ferroelectric thin films with oxide electrodes [J]. Applied Physics Letters, 2017, 111 (5): 052901.
[6] Li S, Wang Y J, Zhu Y L,et al. Evolution of flux-closure domain arrays in oxide multilayers with misfit strain [J]. Acta Materialia, 2019, 171: 176-183.
[7] 陈雨亭, 朱银莲, 宫风辉, 等.铁电全闭合畴结构的稳定性研究[J].电子显微学报, 2020, 39(6): 635-641.
[8] Wang Y J, Feng Y P, Zhu Y L,et al. Polar meron lattice in strained oxide ferroelectrics [J]. Nature Materials, 2020, 19 (8): 881-886.
[9] Tang Y L, Zhu Y L, MaX L, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films [J]. Science, 2015, 348 (6234): 547-551.
[10] Yadav A K,Nelson C T, Hsu S L, et al. Observation of polar vortices in oxide superlattices [J]. Nature, 2016, 530 (7589): 198-201.
[11] GONG F H, TANG Y L, ZHU Y L, et al. Atomic mapping of periodic dipole waves in ferroelectric oxide [J]. Science Advances, 2021, 7(28): eabg5503.
[12] SROLOVITZ D J, SCOTT J F. Clock-model description of incommensurate ferroelectric films and of nematic-liquid-crystal films [J]. Physical Review B, 1986, 34 (3): 1815-1819.
[13] NELSON C T, WINCHESTER B, ZHANG Y, et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces [J]. Nano Letters. 2011, 11 (3): 828-834.
[14] IVRY Y, CHU D P, SCOTT J F, et al. Unexpected controllable pair-structure in ferroelectric nanodomains [J]. Nano Letters,2011, 11 (11): 4619-4625.
[15] FAY D, WEGER M. Vertex corrections in nearly ferroelectric superconductors [J]. Physical Review B, 2000, 62 (22): 15208-15213.
[16] SUA Y, DU J N. Effect of intrinsic surface stress on single-vertex structure of polarization in ferroelectric nanoparticles [J]. Applied Physics Letters, 2010, 96 (16): 162905.
[17] SUA Y, DU J N. Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles [J]. Applied Physics Letters, 2009, 95 (1): 012903.
[18] SHUR V Y, LOBOV A I, SHUR A G, et al. Shape evolution of isolated micro-domains in lithium niobate [J]. Ferroelectrics, 2007, 360: 111-119.
[19] COLOMO F, PRONKO A G, ZINN-JUSTIN P. The arctic curve of the domain wall six-vertex model in its antiferroelectric regime [J]. Journal of Statistical Mechanics: J Theory and Experiment, 2010, 10: L03002.
[20] BLEHER P, LIECHTY K. Exact solution of the six-vertex model with domain wall boundary conditions. critical line between ferroelectric and disordered phases [J]. Journal Of Statistical Physics, 2009, 134(3): 463-485.
[21] BERGER A, HESSE D, HÄHNEL A, et al. Regular nanodomain vertex arrays in BiFeO3 single crystals [J]. Physical Review B, 2012, 85 (6): 064104.
[22] 陈双杰,唐云龙,朱银莲, 等. 类四方BiFeO3薄膜中新型极化拓扑结构研究[J].电子显微学报, 2023, 42(4): 424-432.
[23] LIU Z R, WANG H, LI M, et al. In-plane charged domain walls with memristive behaviour in a ferroelectric film[J]. Nature, 2023, 613(7945): 656-661.
[24] Glazer A M, Mabud S A. Powder profile refinement of lead zirconate titanate at several temperatures. Ⅱ. Pure PbTiO3 [J]. Acta Crystallographica, Section B, Structural Science, 1978, B34 (4): 1065-1070.
[25] Uecker R, Velickov B, Klimm D,et al. Properties of rare-earth scandate single crystals (Re = Nd - Dy) [J]. Journal of Crystal Growth, 2008, 310 (10): 2649-2658.
[26] Tang Y L, Zhu Y L, Ma X L. On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns [J]. Ultramicroscopy, 2016, 160: 57-63.