[1] ZHU G, TIAN X, TAI H-C, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries [J]. Nature, 2021, 596(7873): 525-530.
[2] GUO Y-J, WANG P-F, NIU Y-B, et al. Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes [J]. Nature Communications, 2021, 12(1): 5267.
[3] WANG D, WEI C, LIN M, et al. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode [J]. Nature Communications, 2017, 8(8): 14283.
[4] GIORDANI V, TOZIER D, UDDIN J, et al. Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox [J]. Nature Chemistry, 2019, 11(12): 1133-1138.
[5] CHI X, LI M, DI J, et al. A highly stable and flexible zeolite electrolyte solid-state Li–air battery [J]. Nature, 2021, 592(7855): 551-557.
[6] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review [J]. Energy & Environmental Science, 2011, 4(9): 3243.
[7] LIN M-C, GONG M, LU B, et al. An ultrafast rechargeable aluminium-ion battery [J]. Nature, 2015, 520(7547): 324-328.
[8] LI M, LU J, CHEN Z, et al. 30 years of lithium‐ion batteries [J]. Advanced Materials, 2018, 30(33): 1800561.
[9] YE Y, CHOU L-Y, LIU Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries [J]. Nature Energy, 2020, 5(10): 786-793.
[10] LI P, JIANG R, ZHAO L, et al. Cation defect mediated phase transition in potassium tungsten bronze [J]. Inorganic Chemistry, 2021, 60(23): 18199-18204.
[11] ALI G, ISLAM M, JUNG H-G, et al. Probing the sodium insertion/extraction mechanism in a layered NaVO3 anode material [J]. ACS Applied Materials & Interfaces, 2018, 10(22): 18717-18725.
[12] CAO Y, YE Q, WANG F, et al. A new triclinic phase Na2Ti3O7 anode for sodium‐ion battery [J]. Advanced Functional Materials, 2020, 30(39): 2003733.
[13] YAO L, ZOU P, WANG C, et al. High‐entropy and superstructure‐stabilized layered oxide cathodes for sodium‐ion batteries [J]. Advanced Energy Materials, 2022, 12(41): 2201989.
[14] MA Y, JI S, ZHOU H, et al. Synthesis of novel ammonium vanadium bronze (NH4)0.6V2O5 and its application in Li-ion battery [J]. RSC Advances, 2015, 5(110): 90888-90894.
[15] MERUM D, NALLAPUREDDY R R, PALLAVOLU M R, et al.Pseudocapacitive performance of freestanding Ni3V2O8 nanosheets for high energy and power density asymmetric supercapacitors [J]. ACS Applied Energy Materials, 2022, 5(5): 5561-5578.
[16] BADDOUR-HADJEAN R,BOUDAOUD A, BACH S, et al. A comparative insight of potassium vanadates as positive electrode materials for Li batteries: Influence of the long-range and local structure [J]. Inorganic Chemistry, 2014, 53(3): 1764-1772.
[17] SONG X, LI X, SHAN H, et al. V-O-C bonding of heterointerface boosting kinetics of free‐standing Na5V12O32 cathode for ultralong lifespan sodium‐ion batteries [J]. Advanced Functional Materials, 2023, 2303211.
[18] CHEN M, LIU Q, HU Z, et al. Designing advanced vanadium‐based materials to achieve electrochemically active multielectron reactions in sodium/potassium‐ion batteries [J]. Advanced Energy Materials, 2020, 10(42): 2002244.
[19] DONG Y, LI S, ZHAO K, et al. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes [J]. Energy & Environmental Science, 2015, 8(4): 1267-1275.
[20] GUO X, FANG G, ZHANG W, et al. Mechanistic insights of Zn2+ storage in sodium vanadates [J]. Advanced Energy Materials, 2018, 8(27): 101819.
[21] XIE D, HU F, YU X, et al. High-performance Na1.25V3O8 nanosheets for aqueous zinc-ion battery by electrochemical induced de-sodium at high voltage [J]. Chinese Chemical Letters, 2020, 31(9): 2268-2274.
[22] LIANG S, CHEN T, PAN A, et al. Synthesis of Na1.25V3O8 nanobelts with excellent long-term stability for rechargeable lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2013, 5(22): 11913-11917.
[23] SOUNDHARRAJAN V, SAMBANDAM B, KIM S, et al. Na2V6O16·3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes [J]. Nano Letters, 2018, 18(4): 2402-2410.
[24] HARTUNG S, BUCHER N, FRANKLIN J B, et al. Mechanism of Na+ insertion in alkali vanadates and its influence on battery performance [J]. Advanced Energy Materials, 2016, 6(9): 1502336.
[25] ZHUANG H, XU Y, ZHAO P. Effect of crystallinity on capacity and cyclic stability of Na1.1V3O7.9 nanoplates as lithium-ion cathode materials [J]. Journal of Solid State Electro-chemistry, 2020, 24(1): 217-223.
[26] OSMAN S, ZUO S, XU X, et al. Freestanding sodium vanadate/carbon nanotube composite cathodes with excellent structural stability and high rate capability for sodium-ion batteries [J]. ACS Applied Materials & Interfaces, 2021, 13(1): 816-826.
[27] HE P, ZHANG G, LIAO X, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries [J]. Advanced Energy Materials, 2018, 8(10): 1702463.
[28] SUN D, JIN G, WANG H, et al. Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high performance anodes [J]. Journal of Materials Chemistry A, 2014, 2(32): 12999-13005.
[29] WANG P-P, XU C-Y, MA F-X, et al. In situ soft-chemistry synthesis of β-Na0.33V2O5 nanorods as high-performance cathode for lithium-ion batteries [J]. RSC Advances, 2016, 6(107): 105833-105839.
[30] YANG K, FANG G, ZHOU J, et al. Hydrothermal synthesis of sodium vanadate nanobelts as high-performance cathode materials for lithium batteries [J]. Journal of Power Sources, 2016, 325: 383-390.
[31] SCHINDLER M, HAWTHORNE F C, ALEXANDER M A, et al. Na-Li-[V3O8] insertion electrodes: structures and diffusion pathways [J]. Journal of Solid State Chemistry, 2006, 179(8): 2616-2628.
[32] SONG Y, WANG T, ZHU J, et al. Recent advances in LiV3O8 as anode material for aqueous lithium-ion batteries: Syntheses, modifications, and perspectives [J]. Journal of Alloys and Compounds, 2022, 897: 163065.
[33] WANG X, LIU Q, WANG H, et al. PVP-modulated synthesis of NaV6O15 nanorods as cathode materials for high-capacity sodium-ion batteries [J]. Journal of Materials Science, 2016, 51(19): 8986-8994.
[34] YUAN S, ZHAO Y,WANG Q. Layered Na2V6O16 nanobelts as promising cathode and symmetric electrode for Na-ion batteries with high capacity [J]. Journal of Alloys and Compounds, 2016, 688: 55-60.
[35] YUAN S, LIU Y B, XU D, et al. Pure single‐crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium‐ion batteries [J]. Advanced Science, 2015, 2(3): 1400018.
[36] 陈树林, 高鹏. 原位电子显微学探索固体中的离子迁移行为[J]. 物理, 2019, 48(3): 168-179.
[37] JIANG R, LI P, GUAN X, et al. Na+ migration mediated phase transitions induced by electric field in the framework structured tungsten bronze [J]. The Journal of Physical Chemistry Letters, 2023, 14(13): 3152-3159.
[38] 吕英豪, 李露颖, 刘辉辉, 等. 钾钨青铜材料中的W空位有序[J]. 电子显微学报, 2018, 37(6): 571-577.
[39] 王严, 文广玉, 李雷, 等. 电子束诱导WO2.72单晶生长与还原[J]. 电子显微学报, 2019, 38(6): 600-607.
[40] 王思铭, 彭华雨, 蒋仁辉, 等. 电子束辐照α-MoO3原子尺度结构演变的原位表征[J]. 电子显微学报,2021, 40(5): 496-504.
[41] MENG Q, ZHUANG Y, JIANG R, et al. Atomistic observation of desodiation-induced phase transition in sodium tungsten bronze [J]. The Journal of Physical Chemistry Letters, 2021, 12(12): 3114-3119.
[42] 李敏敏, 曹凡, 贾双凤, 等. 电子束辐照制备钼酸锰纳米材料[J]. 电子显微学报, 2017, 36(4): 328-334.
[43] 马龙辉,孟爽, 蒋仁辉, 等. α-Fe2O3的原子尺度界面结构与演变[J]. 电子显微学报, 2021, 40(5): 529-536.
[44] CAO F, ZHENG H, JIA S, et al. Atomistic observation of phase transitions in calcium sulfates under electron irradiation [J]. The Journal of Physical Chemistry C, 2015, 119(38): 22244-22248.
[45] LU P, YAN P, ROMERO E, et al. Observation of electron-beam-induced phase evolution mimicking the effect of the charge-discharge cycle in Li-rich layered cathode materials used for Li ion batteries [J]. Chemistry of Materials, 2015, 27(4): 1375-1380.
[46] LIN F, MARKUS I M, DOEFF M M, et al. Chemical and structural stability of lithium-ion battery electrode materials under electron beam [J]. Scientific Reports, 2014, 4(1): 5694.
[47] 张锦平. 结构相变中晶体学群论问题的讨论[J]. 电子显微学报, 2020, 39(5): 567-576.
[48] LI S, LIU Z, YANG L, et al. Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material [J]. Nano Energy, 2022, 98: 107335.