针尖-样品距离对扫描微波显微成像的影响分析
薛一凡,王采慧,裴 涛,温焕飞*
(中北大学仪器与电子学院仪器科学与动态测试教育部重点实验室,山西太原030051)
摘 要 随着芯片制备工艺的不断完善,半导体集成电路朝着小型化、集成化的方向不断发展,给近场微波成像技术带来了新的挑战。本文建立了探针-样品三维电磁耦合模型,并利用有限元数值分析法研究了探针针尖与样品之间的电磁相互作用。在不同探针-样品间距下,对硅基芯片表面结构进行扫描微波成像。成像结果与仿真结果相一致,随着针尖-样品间距的增加,扫描微波测试系统的灵敏度和分辨率降低。对于由原子力显微术结合微波测量技术发展而来的扫描微波显微镜的改进与产业化具有重大意义。
关键词 扫描微波显微镜;有限元法;电磁建模;针尖-样品间距
中图分类号:TH742 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.03.005
Analysis of the influence of needle tip sample distance on scanningmicrowave microscopy imaging
XUE Yifan,WANG Caihui,PEI Tao,WEN Huanfei*
(Key Laboratory of instrumental science and dynamic testing, Ministry of Education, School of Instrumentation and Electronics, North University of China, Taiyuan Shanxi 030051, China)
Abstract With the continuous improvement of chip preparation process, semiconductor integrated circuits are being developed toward miniaturization and integration, which brings new challenges to the near-field microwave imaging technology. In this paper, a probe-sample three-dimensional electromagnetic coupling model was established. The electromagnetic interaction between probe tip and sample was investigated using finite element numerical analysis. Scanning microwave imaging of the surface structure of Si-based chip was performed at different probe-sample spacings. Imaging results were consistent with simulation results. The sensitivity and resolution of the scanning microwave test system decreased as the tip-sample spacing increased. It is of great significance for the improvement and industrialization of scanning microwave microscopy developed from the combination of atomic force microscopy and microwave measurement technology.
Keywords scanning microwave microscope; finite element method; electromagnetic modeling; needle tip sample spacing
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] 殷伯华, 初明璋, 林云生, 等. CD-AFM在45nm节点半导体芯片检测过程中的应用[J]. 电子显微学报, 2009, 28(2): 127-130.
[2] 许军, 金晨, 牛刘敏, 等. 低噪声原子力显微镜测量单元设计[J]. 电子显微学报, 2021, 40(2): 138-143.
[3] 许瑞, 郑志月, 季威, 等. 新型扫描微波显微术[J]. 物理学进展, 2015, 35(6): 241-256.
[4] MICHALAS L, WANG F, BRILLARD C, et al. Modeling and De-embedding the interferometric scanning microwave microscopy by means of dopant profile calibration[J]. Applied Physics Letters, 2015, 107(22): 223102.
[5] LUCIBELLO A, SARDI G M, CAPOCCIA G, et al. A Broadband toolbox for scanning microwave microscopy transmission measurements[J]. Review of Scientific Instruments, 2016, 87(5): 053701.
[6] HOMMEL S, KILLAT N, ALTES A, et al. Scanning microwave microscopy for electronic device analysis on nanometre scale[J]. Microelectronics Reliability, 2016, 64(Sep): 310-312.
[7] BIAGI M C, FABREGAS R, GRAMSE G, et al. Nanoscale electric permittivity of single bacterial cells at gigahertz frequencies by scanning microwave microscopy[J]. ACS Nano, 2016, 10(1): 280-288.
[8] PEI T, CHENG F, JIA X D, et al. High-resolution detection of microwave fields on chip surfaces based on scanning microwave microscopy[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-6.
[9] CHENG F, ZHANG Z, PEI T, et al. Imaging microwave field of chip surfaces based on scanning microwave microscopy[J]. Physica Scripta, 2023, 98(7): 075502.
[10] 薛一凡, 王采慧, 裴涛, 等. 悬臂梁式扫描微波探针设计[J]. 传感器与微系统, 2023, 42(6):74-77.
[11] KARBASSI A, RUF D, BETTERMANN A D, et al. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement[J]. Review of Scientific Instruments, 2008, 79(9): 094706.
[12] LEE S C, VLAHACOS C P, FEENSTRA B J, et al. Magnetic permeability imaging of metals with a scanning near-field microwave microscope[J]. Applied Physics Letters, 2000, 77(26): 4404-4406.
[13] 郑云志, 苑华磊, 郑坤, 等. Cu掺杂及应变加载对单根SnSe微米线电学性能影响的研究[J]. 电子显微学报, 2019, 38(5):483-489.
[14] 吴睿, 刘显强, 李永合, 等. 原子层沉积改性掺杂颗粒的PEO基固态电解质的研究[J]. 电子显微学报, 2018, 37(4):315-320.
[15] BARBER M E, MA E Y, SHEN Z X. Microwave impedance microscopy and its application to quantum materials[J]. Nature Reviews Physics, 2022, 4(1): 61-74.