[1] HUSSEIN A K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding [J]. Renewable and Sustainable Energy Reviews, 2015, 42: 460-476.
[2] LIU Q, HU Z, CHEN M, et al. The cathode choice for commercialization of sodium‐ion batteries: Layered transition metal oxides versus prussian blue analogs [J]. Advanced Functional Materials, 2020, 30(14): 1909530-1909545.
[3] YOU Y,MANTHIRAM A. Progress in high‐voltage cathode materials for rechargeable sodium‐ion batteries [J]. Advanced Energy Materials, 2017, 8(2): 1701785.
[4] WANG Y, ZHANG Y, CHENG H, et al. Research progress toward room temperature sodium sulfur batteries: A review [J]. Molecules, 2021, 26(6): 1535.
[5] WANG Y, WANG X, LI X, et al. The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries [J]. Chemical Engineering Journal, 2019, 360: 139-147.
[6] SUN Y,GUO S,ZHOU H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage [J]. Energy & Environmental Science, 2019, 12(3): 825-840.
[7] ZHENG M Y, BAI Z Y, HE Y W, et al. Anionic redox processes in maricite- and triphylite-NaFePO4 of sodium-ion batteries [J]. ACS Omega, 2020, 5(10): 5192-5201.
[8] CHUNG S C, MING J, LANDER L, et al. Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases [J]. Journal of Materials Chemistry A, 2018, 6(9): 3919-3925.
[9] JIN D, QIU H, DU F, et al. Co-doped Na2FePO4F fluorophosphates as a promising cathode material for rechargeable sodium-ion batteries [J]. Solid State Sciences, 2019, 93: 62-69.
[10] QIAN J, WU C, CAO Y, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries [J]. Advanced Energy Materials, 2018, 8(17): 1702619.
[11] HUANG Z X, GU Z Y, HENG Y L, et al. Advanced layered oxide cathodes for sodium/potassium-ion batteries: Development, challenges and prospects [J]. Chemical Engineering Journal, 2023, 452: 139438-139461.
[12] YANG L, LUO S H, WANG Y, et al. Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries [J]. Chemical Engineering Journal, 2021, 404: 126578-126587.
[13] HAKIM C, ASFAW H D, YOUNESI R, et al. Development of P2 or P2/P3 cathode materials for sodium-ion batteries by controlling the Ni and Mn contents in Na0.7CoxMnyNizO2 layered oxide [J]. Electrochimica Acta, 2023, 438(7): 141540.
[14] WANG K,YAN P,SUI M. Phase transition induced cracking plaguing layered cathode for sodium-ion battery [J]. Nano Energy, 2018, 54: 148-155.
[15] GUO C, YIN S, HUANG L, et al. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property [J]. ACS Appl Mater Interfaces, 2011, 3(7): 2794-2799.
[16] SHENG T, CHAVVAKULA P P, CAO B, et al. Growth of ultra-long sodium tungsten oxide and tungsten oxide nanowires: Effects of impurity and residue deposition [J]. Journal of crystal growth, 2014, 395: 61-67.
[17] JIANG R, LI P, GUAN X, et al. Na+ migration mediated phase transitions induced by electric field in the framework structured tungsten bronze [J]. The Journal of Physical Chemistry Letters, 2023, 14: 3152-3159.
[18] LI P, JIANG R, ZHAO L, et al. Cation defect mediated phase transition in potassium tungsten bronze [J]. Inorganic Chemistry, 2021, 60(30): 18199-18204.
[19] JIA S, ZHENG H, SANG H, et al. Self-assembly of KxWO3 nanowires into nanosheets by an oriented attachment mechanism [J]. ACS Appl Mater Interfaces, 2013, 5(20): 10346-10351.
[20] JIA S F, SANG H Q, ZHANG W J, et al. Ordered and twinned structure in hexagonal-based potassium tungsten bronze nanosheets [J]. Journal of Applied Crystallography, 2013, 46(6): 1817-1822.
[21] CHAO L, SUN C, DOU J, et al. Tunable transparency and NIR-shielding properties of nanocrystalline sodium tungsten bronzes [J]. Nanomaterials, 2021, 11(3): 731.
[22] CUI G, WANG W, MA M, et al. IR-driven photocatalytic water splitting with WO2-NaxWO3 hybrid conductor material [J]. Nano Letters, 2015, 15(11): 7199-7203.
[23] GUO C,YIN S,SATO T. Effects of crystallization atmospheres on the near‐infrared absorbtion and electroconductive properties of tungsten bronze type MxWO3 (M= Na, K) [J]. Journal of the American Ceramic Society, 2012, 95(5): 1634-1639.
[24] GAO T,JELLE B P. Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods [J]. The Journal of Physical Chemistry C, 2013, 117(26): 13753-13761.
[25] GRANQVIST C G. Electrochromics for smart windows: Oxide-based thin films and devices [J]. Thin Solid Films, 2014, 564: 1-38.
[26] MARTINS T A, MACHADO T R, FERRER M M, et al. Facile microwave-assisted hydrothermal synthesis of hexagonal sodium tungsten bronze and its high response to NO2 [J]. Materials Letters, 2016, 185: 197-200.
[27] CHOWDHURY R, TEGG L, KEAST V J, et al. Plasmonic enhancement of aqueous processed organic photovoltaics [J]. RSC Advances, 2021, 11(31): 19000-19011.
[28] VISWANATHAN K. Crystal structure of sodium tetratungstate, Na2W4O13 [J]. Journal of the Chemical Society, Dalton Transactions, 1974: 2170-2172.
[29] ZHANG K, FENG S, WANG J, et al. Manganese doping of monolayer MoS2: The substrate is critical [J]. Nano Letters, 2015, 15(10): 6586-6591.
[30] SHI R, YE H F, LIANG F, et al. Interstitial P-doped CdS with long-lived photogenerated electrons for photocatalytic water splitting without sacrificial agents [J]. Advanced Materials, 2018, 30(6): 1705941.
[31] YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J]. Nature Communications, 2017, 8: 14101.
[32] ZHANG R, WANG C, GE M, et al. Accelerated degradation in a quasi-single-crystalline layered oxide cathode for lithium-ion batteries caused by residual grain boundaries [J]. Nano Letters, 2022, 22(9): 3818-3824.
[33] ZHANG Y, TAO L, XIE C, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Advanced Materials, 2020, 32(7): 1905923.
[34] WANG R, CHEN X, HUANG Z, et al. Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials [J]. Nature Communications, 2021, 12(1): 3085.
[35] LANG Q, HU W, ZHOU P, et al. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction [J]. Nanotechnology, 2017, 28(48): 484003.
[36] LIU Y, RONG X, BAI R, et al. Identifying the intrinsic anti-site defect in manganese-rich NASICON-type cathodes [J]. Nature Energy, 2023, 8(10): 1088-1096.
[37] ASAYESH‐ARDAKANI H, YAO W, YUAN Y, et al. In situ TEM investigation of ZnO nanowires during sodiation and lithiation cycling [J]. Small Methods, 2017, 1(9): 1700202.
[38] XU Z, RAHMAN M M, MU L, et al. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries [J]. Journal of Materials Chemistry A, 2018, 6(44): 21859-21884.
[39] XU G L, LIU X, DAALI A, et al. Challenges and strategies to advance high‐energy Nickel‐Rich layered lithium transition metal oxide cathodes for harsh operation [J]. Advanced Functional Materials, 2020, 30(46): 2004748.
[40] QIAN G, ZHANG Y, LI L, et al. Single-crystal nickel-rich layered-oxide battery cathode materials: Synthesis, electrochemistry, and intra-granular fracture [J]. Energy Storage Materials, 2020, 27: 140-149.
[41] 蒋仁辉, 李佩, 林泽圣, 等. 无序超结构Na5W14O44的制备与原子尺度表征[J]. 电子显微学报, 2022, 41(4): 413-427.
[42] KIM C Y,HUH S H,RIU D H. Formation of nano-rod sodium tungstate film by sodium ion diffusion [J]. Materials Chemistry and Physics, 2009, 116(2/3): 527-531.
[43] 曹凡, 贾双凤, 刘曦, 等. CuO纳米线中的取向畴[J]. 电子显微学报, 2017, 36(3): 214-221.
[44] 蒋仁辉, 李佩, 孟琪, 等. 金属氧化物半导体的界面结构表征与调控[J]. 中国材料进展, 2021: 1-8.
[45] 王正洲, 文广玉, 赵立功, 等. Al-O化合物中的有序超结构与取向畴[J]. 电子显微学报, 2020, 39(5): 487-497.
[46] MENG Q, ZHUANG Y, JIANG R, et al. Atomistic observation of desodiation-induced phase transition in sodium tungsten bronze [J]. Journal of Physical Chemistry Letters, 2021, 12(12): 3114-3119.
[47] LIN Z S, DONG J Q, WANG X, et al. Twin-structured graphene metamaterials with anomalous mechanical properties [J]. Advanced Materials, 2022, 34(17): 9.
[48] 吕英豪, 李露颖, 刘辉辉, 等. 钾钨青铜材料中的W空位有序[J]. 电子显微学报, 2018, 37(6): 571-577.
[49] 马龙辉, 孟爽, 蒋仁辉, 等. α-Fe2O3的原子尺度界面结构与演变[J]. 电子显微学报, 2021, 40(5): 529-536.
[50] 王思铭, 彭华雨, 蒋仁辉, 等. 电子束辐照α-MoO3原子尺度结构演变的原位表征[J]. 电子显微学报, 2021, 40(5): 496-504.
[51] 王严, 文广玉, 李雷, 等. 电子束诱导WO2.72单晶生长与还原[J]. 电子显微学报, 2019, 38(6): 600-607.