利用扫描隧道显微术对SrTiO3(001)上生长CoSe/FeSe异质界面结构和谱学研究
苗光耀#*,徐小凤#,方 皓,朱学涛,郭建东*,王炜华*
(1.中国科学院物理研究所,北京凝聚态物理国家实验室,北京 100190;2. 华中科技大学光学与电子信息学院,湖北 武汉 430074;3.中国科学院大学物理科学学院, 北京 100049;4.松山湖材料实验室,广东 东莞 523808)
摘 要 硒化铁/钛酸锶(001)(FeSe/SrTiO3(001),FeSe/STO)中界面增强的超导电性一直是近些年凝聚态物理领域的热点问题之一,基于FeSe薄膜构筑异质界面是调控其超导电性和构筑新奇量子物态的重要手段。本文报道了利用分子束外延在SrTiO3(001)衬底上制备了高质量硒化钴-硒化铁(CoSe/FeSe)纵向异质结的方法,利用扫描隧道显微镜和扫描隧道谱详细研究了该异质界面的电子性质和电子态密度的实空间分布。由于CoSe/FeSe界面存在强烈的电荷转移,FeSe处于过掺杂状态,导致FeSe/STO界面相互作用已不满足非绝热近似,以及FeSe中超导电性的消失。空间依赖的扫描隧道谱显示,CoSe/FeSe的异质界面边缘处出现了晶向依赖的边缘电子态和边角电子态,这些边界上的电子态受到CoSe/FeSe界面电荷转移效应的调制。该研究为基于单层FeSe/STO界面超导电性的调控及量子结构的构筑提供了借鉴。
关键词 分子束外延;扫描隧道显微镜;异质结;界面电荷转移;CoSe
中图分类号:O469;O485;O511+.3;O484.1 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.03.001
Study on the structural and electronic properties of CoSe/FeSe heterostructures grown on SrTiO3 using scanning tunneling microscopy
MIAO Guang-yao 1*#, XU Xiao-feng 1#, FANG Hao 2, ZHU Xue-tao 1,3,4, GUO Jian-dong 1,3*, WANG Wei-hua 1,4*
(1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190;2. School of Optical and Electronic Information,Huazhong University of Science and Technology,Wuhan Hubei 430074;
3. School of Physical Sciences, University of Chinese Academy of Sciences,Beijing 100049;4.Songshan Lake Materials Laboratory,Dongguan Guangdong 523808, China)
Abstract The interface-enhanced superconductivity of FeSe/SrTiO3 has been one of the most attractive topics in the field of condensed matter physics. Fabricating heterostructures based on ultrathin FeSe films provides a promising method to tune their superconductivity and to construct novel quantum states. Here, we prepared high-quality CoSe/FeSe vertical heterostructure films on SrTiO3 (001) substrate by molecular beam epitaxy. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were employed to investigate their electronic properties and the spatial distribution of electronic states. Due to the significant interfacial charge transfer from CoSe to FeSe, FeSe was in an over-doped state, which broken the non-adiabatic approximation in FeSe/STO and suppressed its superconductivity. The space-resolved STS measurements revealed the direction-dependent edge states and corner states tuned by the interfacial charge transfer at the CoSe/FeSe interface. This work provides a reference for the tuning of superconductivity and the construction of quantum structures based on single-layer FeSe/SrTiO3.
Keywords molecular beam epitaxy; scanning tunneling microscopy; heterostructure; interfacial charge transfer; CoSe
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] WANG Q S, SHEN Y, PAN B Y et al. Magnetic ground state of FeSe [J]. Nat Commun,2016,7(1): 12182.
[2] SONG C L,ZHANG H M,ZHONG Y,et al. Observation of double-dome superconductivity in potassium-doped FeSe thin films [J]. Phys Rev Lett,2016,116(15): 157001.
[3] MIYATA Y,NAKAYAMA K,SUGAWARA K,et a1. High—temperature superconductivity in potassium—coated multilayer FeSe thin films[J].Nat Mater,2015,14(8):775—779
[4] SHIOGAI J,ITO Y,MITSUHASHI T,et al. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO [J]. Nat Phys,2016. 12(1): 42-46.
[5] LEI B, CUI J H, XIANG Z J, et al. Evolution of high-temperature superconductivity from a low-Tcphase tuned by carrier concentration in FeSe thin flakes [J]. Phys Rev Lett,2016,116(7): 077002.
[6] HANZAWA K, SATO H, HIRAMATSU H, et al. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K [J]. Proc Natl Acad Sci USA,2016,113(15): 3986-90.
[7] DONG X L, ZHOU H X, YANG H X, et al. Phase diagram of (Li(1-x)Fe(x))OHFeSe: A bridge between iron selenide and arsenide superconductors [J]. J Am Chem Soc,2015,137(1): 66-69.
[8] JIANG X Y, QIN M Y, WEI X J, et al. Interplay between superconductivity and the strange-metal state in FeSe [J]. Nat Phys,2023,19(1): 365–371.
[9] GUAN J Q, LIU J, LIU B, et al. Superconducting transition of FeSe/SrTiO3induced by adsorption of semiconducting organic molecules [J]. Phys Rev B, 2017,95(20): 205405.
[10] ZHANG S Y, MIAO G Y, GUAN J Q, et al. Superconductivity of the FeSe/SrTiO3 interface in view of BCS–BEC Crossover [J]. Chin Phys Lett,2019,36(10): 107404.
[11] WANG Z F, ZHANG H M, LIU D F, et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film [J]. Nat Mater, 2016,15(9): 968-973.
[12] ZHANG P, KOICHIRO Y, TAKAHIRO H, et al. Observation of topological superconductivity on the surface of an iron-based superconductor [J]. Science,2018,360(6385): 182-186.
[13] WANG D F, KONG L Y, FAN P, et al. Evidence for Majorana bound states in an iron-based superconductor [J]. Science, 2018,362(6412): 333-335.
[14] WANG Q Y, ZHANG L Z, ZHANG W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 [J]. Chin Phys Lett, 2012,29(3): 037402.
[15] WANG L L, MA X C, XUE Q K. Interface high-temperature superconductivity [J]. Supercon Sci Technol, 2016, 29(12): 123001.
[16] BANG J, LI Z, SUN Y Y, et al. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency [J]. Phys Rev B, 2013, 87(22): 220503.
[17] GONG G M, YANG H H, ZHANG Q H, et al. Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3−δ[J]. Phys Rev B, 2019, 100(22): 224504.
[18] HU Y, XU Y, WANG Q Y, et al. Identification of a large amount of excess Fe in superconducting single-layer FeSe/SrTiO3films [J]. Phys Rev B, 2018, 97(22): 224512.
[19] ZHANG S Y, GUAN J Q, JIA X, et al. Role of SrTiO3phonon penetrating into thin FeSe films in the enhancement of superconductivity [J]. Phys Rev B, 2016, 94(8): 081116.
[20] ZHANG S Y, GUAN J Q, WANG Y, et al. Lattice dynamics of ultrathin FeSe films on SrTiO3[J]. Phys Rev B, 2018, 97(3): 035408.
[21] ZHANG S Y, WEI T, GUAN J Q, et al. Enhanced superconducting state in FeSe/SrTiO3by a dynamic interfacial polaron mechanism [J]. Phys Rev Lett, 2019,122(6): 066802.
[22] SONG Q, YU T L, LOU X, et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface [J]. Nat Commun, 2019,10(1): 758.
[23] LIU C, ZHENG F W, SHEN L, et al. Anti-PbO-type CoSe film: A possible analog to FeSe superconductors [J]. Supercond Sci Technol, 2018,31(11): 115011
[24] SHEN L, LIU C, ZHENG FW, et al. Evolution of electronic structure and electron-phonon coupling in ultrathin tetragonal CoSe films [J]. Physical Review Materials, 2018,2(11): 114005.
[25] YANG Y, FENG S Q, LU H Y, et al. Electronic structure and RPA spin susceptibility of anti-PbO type CoSe [J]. Solid State Commun,2019,300: 113670.
[26] LIU C, MAO J H, DING H, et al. Extensive impurity-scattering study on the pairing symmetry of monolayer FeSe films on SrTiO3[J]. Phys Rev B,2018,97(2): 024502.
[27] XU X F, ZHANG S Y, GUAN J Q, et al. Existence of interfacial polaronic plasmon: A comparative study between FeSe/SrTiO3and CoSe/SrTiO3[J]. Phys Rev B, 2022,105(12): 125410.
[28] LI Z, PENG J P, ZHANG H M, et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: A scanning tunneling microscopy study [J]. J. Phys Condens Matter, 2014,26(26): 265002.
[29] HU Y, XU Y, ZHANG Y M, et al. Discovery of an insulating parent phase in single-layer FeSe/SrTiO3films [J]. Phys Rev B, 2020,102(11): 115144.
[30] TANG C J, LIU C, ZHOU G Y, et al. Interface-enhanced electron-phonon coupling and high-temperature superconductivity in potassium-coated ultrathin FeSe films on SrTiO3[J]. Phys Rev B, 2016,93(2): 020507.
[31] ZHANG W H, LIU X, WEN C H, et al. Effects of surface electron doping and substrate on the superconductivity of epitaxial FeSe films [J]. Nano Lett, 2016,16(3): 1969-1973.
[32] 姚钢,刘灿华,贾金锋. 表面K原子吸附的多层FeSe薄膜的超导性质[J]. 电子显微学报,2020,39(5):577-585.
[33] WANG Y L, JIANG Y P, CHEN M, et al. Scanning tunneling microscopy of interface properties of Bi2Se3on FeSe [J]. J Phys Condens Matter,2012,24(47): 475604.
[34] ZHANG H M, ZOU Q, LI L. Tomonaga–luttinger liquid in the topological edge channel of multilayer FeSe [J]. Nano Lett,2021,21(14): 6253-6260.
[35] 姚钢,刘灿华,贾金锋.基于扫描隧道显微镜的原位表征技术[J].电子显微学报,2018,37(5):408-413.
[36] 朱柳, 胡阳, 胡旺,等. 低维磁性异质结复合材料的界面和电镜表征[J]. 电子显微学报,2022,41(3): 341-361