三维原子探针的电场结构模拟研究
李依轩,刘俊亮*,王 伟,于得洋,徐先东*
(1.湖南大学 材料科学与工程学院,湖南 长沙 410082; 2.中国科学院近代物理研究所,甘肃 兰州 730000; 3.中国科学院大学 核科学与技术学院,北京 100049)
摘要 本文针对目前世界上被广泛使用的局部电极原子探针的样品及局部电极几何结构,通过有限元方法,结合多物理场仿真技术,研究了局部电极与针状样品的距离z、样品尖端曲率半径ρ 、局部电极的入口直径φ、厚度w、开口角度α和入口长度h等参数对样品尖端附近的局部电场的影响。模拟结果表明:当z与φ的取值满足z/φ≥1时,既能在样品尖端得到较高的蒸发电场强度,又能降低局部电极对离子轨迹的影响;局部电极的厚度w和开口角度α的取值对样品尖端的电场影响较小;增大局部电极入口长度h的值有利于提高样品尖端电场强度;随着原子的蒸发(样品尖端曲率半径ρ增大),为维持原子蒸发所需的电场强度,施加在样品上的电压V与样品尖端的曲率半径ρ成正比,且所需维持的电场强度越高,施加的电压V越大。
关键词 三维原子探针;局部电极;有限元模拟;电场结构;离子轨迹
中图分类号:O766+.1; O657.63; O463+.2 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.02.006
Simulation of the electric field structure of a three-dimensional atom probe
LI Yixuan1, 2, LIU Junliang2, 3*, WANG Wei2, 3, YU Deyang2, 3, XU Xiandong1*
(1. College of Materials Science and Engineering, Hunan University, Changsha Hunan 410082; 2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou Gansu 730000; 3. College of Nuclear Science and Technology, University of the Chinese Academy of Sciences, Beijing 100049, China)
Abstract This article employed the finite element method and multiphysics simulation to analyze the structure of a local electrode atom probe. The impact of various parameters, including inlet diameter (φ), thickness (w), opening angle (α), entrance length (h) of the local electrode, the radius of curvature (ρ) of the specimen, and the distance (z) between the local electrode and the needle-shaped specimen on the local electric field structure near the apex of a specimen, was investigated. The results indicated that a higher evaporation electric field strength was achieved at the apex of the specimen, and the influence of local electrode on ion trajectories was reduced when the ratio of distance (z) to inlet diameter (φ) satisfied z/φ≥1. Specifically, the thickness (w) and opening angle (α) of the local electrode had a minimal impact on the electric field at the apex of the specimen. In contrast, the increase of the entrance length (h) of the local electrode improved the electric field strength at the apex of the specimen. Moreover, the radius of curvature (ρ) of the specimen increased as atoms continued to evaporate from the specimen surface. The electric field (V) applied to the specimen was proportional to the radius of curvature (ρ) of the specimen to maintain the required electric field intensity. The higher intensity of electric field corresponded to the greater applied electric field (V).
Keywords atom probe tomography; local electrode; finite element simulation; electric field structure; ion trajectory
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] MILLER M K. Atom probe tomography-analysis at the atomic level[M]. New York: Kluwer Academic/Plenum Publishers, 2000.
[2] MÜLLER E W. Das Feldionenmikroskop[J]. Zeitschrift für Physik A Hadrons and Nuclei, 1951(131): 136–142.
[3] MÜLLER E W, PANITZ J A, MCLANE S B, et al. The atom-probe field ion microscope[J]. Review of Scientific Instruments, 1968, 39: 83-86.
[4] PANITZ J A. The 10 cm atom probe[J]. Review of Scientific Instruments, 1973, 44(8): 1034-1038.
[5] CEREZO A, GODFREY T J, SMITH G D W. Application of a position‐sensitive detector to atom probe microanalysis[J]. Review of Scientific Instruments, 1988, 59(6): 862-866.
[6] NISHIKAWA O. Development of a scanning atom probe[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1995, 13(2): 599-602.
[7] NISHIKAWA O, KIMOTO M. Toward a scanning atom probe computer simulation of electric field[J]. Applied Surface Science, 1994, 76-77: 424-430.
[8] KELLY T F, LARSON D J. Local electrode atom probes[J]. Materials Characterization, 2000, 44(1/2): 59-85.
[9] KELLY T F, CAMUS P P, LARSON D J, et al. On the many advantages of local-electrode atom probes[J]. Ultramicroscopy, 1996, 62(1): 29-42.
[10] 刘吉梓, 郑嘉玲, 秦永贵. 基于三维原子探针统计学结果的Al-Zn-Mg合金自然时效早期析出动力学研究[J]. 电子显微学报, 2018, 37(2): 128-136.
[11] 李慧, 夏爽, 周邦新, 等. 原子探针层析方法研究690合金晶界偏聚的初步结果[J]. 电子显微学报, 2011, 30(3): 206-209.
[12] ADEGOKE O, KUMARA C, THUVANDER M, et al. Scanning electron microscopy and atom probe tomography characterization of laser powder bed fusion precipitation strengthening nickel-based superalloy[J]. Micron, 2023, 171: 103472.
[13] SASIDHAR K N, KHANCHANDANI H, ZHANG S, et al. Understanding the protective ability of the native oxide on an Fe-13 at.% Cr alloy at the atomic scale: A combined atom probe and electron microscopy study[J]. Corrosion Science, 2023, 211: 110848.
[14] JIN S, SU H, QIAN F, et al. Effects of atom probe analysis parameters on composition measurement of precipitates in an Al-Mg-Si-Cu alloy[J]. Ultramicroscopy, 2022, 235: 113495.
[15] NDIAYE S, DUGUAY S, VURPILLOT F, et al. Atom probe tomography of hyper-doped Ge layers synthesized by Sb in-diffusion by pulsed laser melting[J]. Materials Science in Semiconductor Processing, 2023, 164: 107641.
[16] BEAINY G, ALCOTTE R, BASSANI F, et al. Direct examination of Si atoms spatial distribution and clustering in GaAs thin films with atom probe tomography[J]. Scripta Materialia, 2018, 153: 109-113.
[17] HOLMES N P, ROOHANI I, ENTEZARI A, et al. Discovering an unknown territory using atom probe tomography: Elemental exchange at the bioceramic scaffold/bone tissue interface[J]. Acta Biomaterialia, 2023, 162: 199-210.
[18] CHEN Y M, OHKUBO T, KODZUKA M, et al. Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics[J]. Scripta Materialia, 2009, 61(7): 693-696.
[19] MITCHELL A L, PEREA D E, WIRTH M G, et al. Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography[J]. Scripta Materialia, 2021, 203: 114110.
[20] NISHIKAWA O, KATO H. Atom-probe study of a conducting polymer: The oxidation of polypyrrole[J]. The Journal of Chemical Physics, 1986, 85(11): 6758-6764.
[21] PROSA T J, KOSTRNA S L P, KELLY T F. Laser atom probe tomography: Application to polymers[C]. 19th International Vacuum Nanoelectronics Conference, Guilin, China, 2006:533-534.
[22] LOI S T, GAULT B, RINGER S P, et al. Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry[J]. Ultramicroscopy, 2013, 132: 107-113.
[23] MOY C K S, RANZI G, PETERSEN T C, et al. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters[J]. Ultramicroscopy, 2011, 111: 397-404.
[24] MAYAMA N, YAMASHITA C, KAITO T, et al. Stress of needle specimen on the three-dimensional atom probe (3DAP)[J]. Surface and Interface Analysis, 2008, 40: 1610-1613.
[25] 张雨露, 张利新, 刘俊标, 等. 微型阵列束闸电子束偏转特性研究[J]. 电子显微学报, 2023, 42(2): 171-179.
[26] 孟彦亭, 王鹏飞, 刘俊标, 等. 基于纳米晶材料的高频大范围偏转器研究[J]. 电子显微学报, 2021, 40(4): 452-459.
[27] PANUGANTI H, PIOT P. Electromagnetic modeling using COMSOL of field-emitter cathodes inside an L-band radiofrequency gun at Fermilab[C]. Proceedings of COMSOL Conference, Boston, America, 2017.
[28] PROMMESBERGER C, DAMS F, LANGER C, et al. Simulation of electron trajectories of a field emission electron source in triode configuration by using finite element methods[C]. 24th International Vacuum Nanoelectronics Conference, Wuppertal, Germany, 2011: 115-116.
[29] TSONG T T. Field ion image formation[J]. Surface Science, 1978, 70(1):211-233.
[30] GOMER R. Field emission and field ionization[M]. Cambridge, MA: Harvard University Press, 1961.