固溶工艺对镍基单晶高温合金初熔温度的影响
孙铭,王恒喆,龙海波,毛圣成,张泽,韩晓东
(1.北京工业大学材料与制造学部,北京100124;2. 浙江大学材料科学与工程学院,杭州310027)
摘 要 固溶处理是消除镍基单晶高温合金凝固偏析的重要手段,而进行固溶处理的前提是具备合适的固溶窗口。随合金的发展,固溶窗口逐渐变窄,从而加大了固溶处理的难度。由于固溶窗口为动态窗口,其上限的初熔温度会随合金内部γʹ相及共晶的溶解而提高,因此开展固溶工艺对合金初熔温度影响机制的研究具有重要意义。然而,目前缺乏不同固溶工艺对合金初熔温度影响机制及作用机理的相关研究。本文采用电子显微学为研究手段,对比研究了阶段式和连续式固溶处理对初熔温度的影响规律。研究发现,固溶处理会促进合金的均匀化行为,而均匀化程度随固溶工艺中高温下保温时间的延长而增加;均匀化效果越好的样品,其初熔温度提升更大,但是均匀化效果越好的合金内部也存在较多由“柯肯达尔效应”所诱发形成的固溶微孔。
关键词 镍基单晶高温合金;固溶处理;初熔温度;微观组织
中图分类号:TG132.3+2;TG115.21+5.3;TB31 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.02.003
Effect of solid solution process on the solid solution window of Ni-base single crystal superalloy
SUN Ming1, WANG Hengzhe1, LONG Haibo1, MAO Shengcheng1, ZHANG Ze1, 2, HAN Xiaodong1
(1. Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124;2. School of Materials Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310008, China)
Abstract Solution heat treatment is an essential method to eliminate the solidification segregation of Ni-based single-crystal superalloys. The premise for the solution heat treatment is that there should exist a suitable solution window. With the development of the alloy, the solid solution window gradually narrows, increasing the difficulty of solution heat treatment. Since the solid solution window is dynamic, the upper limit of the initial melting temperature increases with the dissolution of the γʹphase and eutectic in the alloy. Therefore, it is of great significance to study the influence of the solution heat treatment process on the initial melting temperature. However, there is a lack of relevant research. In this paper, the effects of step and ramp solution heat treatment on microstructure and initial melting temperature was studied by transmission electron microscope (TEM). It was found that solution heat treatment promoted the homogenization behavior. The degree of homogenization increased with the prolongation of the holding time at high temperatures in the solution heat treatment process. The better homogenization effect increased the initial melting temperature, but it also promoted the Kirkendall effect and induced more solid solution micropores.
Keywords Ni-based single crystal superalloys; solution window; solution process; initial melting temperature
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] REED R C. The superalloys: Fundamentals and applications [M]. Cambridge: Cambridge University Press, 2006.
[2] 周慧, 龙海波, 毛圣成, 等. Ni基单晶高温合金中γ′粗化行为的电子显微学研究[J]. 电子显微学报, 2022, 41(5): 491-498.
[3] 王文帅, 李雪峤, 龙海波, 等. 镍基单晶高温合金中小角晶界失效机制的原位研究[J]. 电子显微学报, 2022, 41(6): 587-593.
[4] REED R C, TAO T, WARNKEN N. Alloys-by-design: application to nickel-based single crystal superalloys [J]. Acta Materialia, 2009, 57(19): 5898-5913.
[5] 郭建亭. 高温合金材料学(上册):应用基础理论[M]. 北京:科学出版社, 2008.
[6] ELLIOTT A J, POLLOCK T M, TIN S, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3221-3231.
[7] MA D. Novel casting processes for single-crystal turbine blades of superalloys [J]. Frontiers of Mechanical Engineering, 2017, 13(1): 3-16.
[8] 何文玲, 吕俊霞, 程晓鹏, 等. 镍基单晶高温合金孔洞区域蠕变行为原位SEM研究[J]. 电子显微学报, 2022, 41(5): 507-514.
[9] 赵新宝, 岳亮, 夏万顺, 等. 固溶处理对一种第四代镍基单晶高温合金微观组织和偏析的影响[J]. 电子显微学报, 2020, 39(5): 462-469.
[10] LI Q, XIE J, YU J, et al. Solidification behavior and segregation characteristics of high W-content cast Ni-based superalloy K416B [J]. Journal of Alloys and Compounds, 2021, 854: 156027.
[11] ZHANG Y, LI J. Characterization of the microstructure evolution and microsegregation in a Ni-based superalloy under super-high thermal gradient directional solidification [J]. Materials Transactions, 2012, 53(11): 1910-1914.
[12] D’SOUZA N, DONG H B. Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification [J]. Scripta Materialia, 2007, 56(1): 41-44.
[13] 谭伟, 张晓娜, 葛麟, 等. Ni-Al-W三元镍基模型高温合金在热处理过程中显微结构的变化[J]. 电子显微学报, 2021, 40(4): 373-378.
[14] PAN Q, ZHAO X, YUE Q, et al. Effects of cobalt on solidification characteristics and as-cast microstructure of an advanced nickel-based single crystal superalloys [J]. Journal of Materials Research and Technology, 2022, 20: 3074-3082.
[15] 张琰斌. 第三代镍基单晶高温合金固溶处理研究及工艺优化[D]. 西安:西北工业大学, 2018.
[16] ZHANG J, GAO L Q, LIU Y F, et al. Effects of heat treatment on microstrucutures of a Re-containing Ni-based single crystal superalloy [J]. IOP Conference Series: Materials Science and Engineering, 2019, 605: 012017.
[17] AI C, XI L, WANG B, et al. Investigation on solution heat treatment response andγ′ solvus temperature of a Mo-rich second generation Ni based single crystal superalloy [J]. Intermetallics, 2020, 125: 106896.
[18] 李宪, 张晓娜, 于潇翔, 等. 固溶时间对镍基单晶高温合金中Re, Ru元素分布和微观形貌的影响[J]. 电子显微学报, 2014, 33(4): 318-323.
[19] WANG X, WEN Z, CHENG H, et al. Influences of the heating and cooling rates on the dissolution and precipitation behavior of a nickel-based single-crystal superalloy [J]. Metals, 2019, 9(3): 360.
[20] TANCRET F. Thermo-Calc and Dictra simulation of constitutional liquation of gamma prime (γ′) during welding of Ni base superalloys [J]. Computational Materials Science, 2007, 41(1): 13-19.
[21] FUCHS G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Materials Science and Engineering A, 2001, 300 (2001): 52–60.
[22] BORTOLUCI -ORMASTRONI L M, MATAVELI -SUAVE L, CERVELLON A, et al. LCF, HCF and VHCF life sensitivity to solution heat treatment of a third-generation Ni-based single crystal superalloy [J]. International Journal of Fatigue, 2020, 130: 105247.
[23] FUCHS G E. Solution heat treatment response of a third generation single crystal Ni-base superalloy [J]. Materials Science and Engineering: A, 2001, 300(1/2): 52-60.
[24] GUAN Y, LIU E, GUAN X, et al. Influence of Ru on solidification behavior, microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content [J]. Journal of Materials Science & Technology, 2016, 32(3): 271-281.
[25] PANG H T, ZHANG L, HOBBS R A, et al. Solution heat treatment optimization of fourth-generation single-crystal nickel-base superalloys [J]. Metallurgical and Materials Transactions A, 2012, 43(9): 3264-3282.
[26] LIU G, LIU L, HAN Z H, et al. Solidification behavior of Re- and Ru-containing Ni-based single-crystal superalloys with thermal and metallographic analysis [J]. Rare Metals, 2017, 36(10): 792-798.
[27] PANG H T, D’SOUZA N, DONG H, et al. Detailed analysis of the solution heat treatment of a third-generation single-crystal nickel-based superalloy CMSX-10K® [J]. Metallurgical and Materials Transactions A, 2015, 47(2): 889-906.
[28] ZHANG Y, LIU L, HUANG T, et al. Investigation on a ramp solution heat treatment for a third generation nickel-based single crystal superalloy [J]. Journal of Alloys and Compounds, 2017, 723: 922-929.
[29] LIU P, LIU X, HUANG Y, et al. Effect of heating processing on the formation of micro-pores during solution treatment of high generation nickel-based single crystal superalloy [J]. Materials Characterization,2022, 189: 111994.
[30] HEGDE S R, KEARSEY R M, BEDDOES J C. Designing homogenization–solution heat treatments for single crystal superalloys [J]. Materials Science and Engineering: A, 2010, 527(21/22): 5528-5538.
[31] MA S H, HAO H Q, WANG D, et al. Effects of Ta on the solidification behavior and microstructure of a rhenium-containing hot corrosion resistant single crystal [J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(7): 901-907.
[32] FU C L, REED R, JANOTTI A, et al. On the diffusion of alloying elements in the nickel-base superalloys [J]. Superalloys, 2004, 2004: 867-876.
[33] KARUNARATNE M S A, COX D C, CARTER P, et al. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment [C]. Superalloys 2000 (Ninth International Symposium),Cambridge CB2 3QZ,UK,2000: 263-272.