[1] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology, 2012, 7(1): 11-23.
[2] CHOU C C, LEE S H. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy[J]. Wear, 2010, 269(11/12): 757-762.
[3] ZANG J B, WANG Y H, ZHAO S Z, et al. Electrochemical properties of nanodiamond powder electrodes[J]. Diamond and Related Materials, 2007, 16(1): 16-20.
[4] 张金辉,李敬,郁建元. 石墨烯/纳米金刚石复合电极性能研究[J]. 金刚石与磨料磨具工程, 2021,41(4): 31-35.
[5] WANG H, CUI Y. Nanodiamonds for energy[J]. Carbon Energy, 2019, 1(1): 13-18.
[6] SHVIDCHENKO A V, EIDELMAN E D, VUL A Y, et al. Colloids of detonation nanodiamond particles for advanced applications[J]. Advances in Colloid and Interface Science, 2019, 268: 64-81.
[7] BARZEGAR AMIRI OLIA M, DONNELLY P S, HOLLENBERG L C L, et al. Advances in the surface functionalization of nanodiamonds for biological applications: A review[J]. ACS Applied Nano Materials, 2021, 4(10): 9985-10005.
[8] QIAO Z, LI J, ZHAO N, et al. Graphitization and microstructure transformation of nanodiamond to onion-like carbon[J]. Scripta Materialia, 2006, 54(2): 225-229.
[9] RODDATIS V V, KUZNETSOV V L, BUTENKO Y V, et al. Transformation of diamond nanoparticles into carbon onions under electron irradiation[J]. Physical Chemistry Chemical Physics, 2002, 4(10): 1964-1967.
[10] WESOLOWSKI P, LYUTOVICH Y, BANHART F, et al. Formation of diamond in carbon onions under MeV ion irradiation[J]. Applied Physics Letters, 1997, 71(14): 1948-1950.
[11] KUZNETSOV V L, CHUVILIN A L, BUTENKO Y V, et al. Onion-like carbon from ultra-disperse diamond[J]. Chemical Physics Letters, 1994, 222(4): 343-348.
[12] KUZNETSOV V L, BUTENKO Y V. Diamond phase transitions at nanoscale[J]. Ultrananocrystalline Diamond,2006: 405-475.
[13] CHEN M, BEST J P, SHORUBALKO I, et al. Influence of helium ion irradiation on the structure and strength of diamond[J]. Carbon, 2020, 158: 337-345.
[14] REINERT L, ZEIGER M, SUÁREZ S, et al. Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites[J]. Rsc Advances, 2015, 5(115): 95149-95159.
[15] MYKHAILIV O, ZUBYK H, PLONSKA-BRZEZINSKA M E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications[J]. Inorganica Chimica Acta, 2017, 468: 49-66.
[16] HIRAKI J, MORI H, TAGUCHI E, et al. Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope[J]. Applied Physics Letters, 2005, 86(22): 223101.
[17] QIAO Z, LI J, ZHAO N, et al. Graphitization and microstructure transformation of nanodiamond to onion-like carbon[J]. Scripta Materialia, 2006, 54(2): 225-229.
[18] ZEIGER M, JÄCKEL N, ASLAN M, et al. Understanding structure and porosity of nanodiamond-derived carbon onions[J]. Carbon, 2015, 84: 584-598.
[19] ZEIGER M, JÄCKEL N, MOCHALIN V N, et al. Carbon onions for electrochemical energy storage[J]. Journal of Materials Chemistry A, 2016, 4(9): 3172-3196.
[20] LEE G D, WANG C Z, YU J, et al. Heat-induced transformation of nanodiamond into a tube-shaped fullerene: A molecular dynamics simulation[J]. Physical Review Letters, 2003, 91(26): 265701.
[21] KUZNETSOV V L, ZILBERBERG, I L, BUTENKO, et al. Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. [J]. Journal of Applied Physics, 1999, 86: 863–870.
[22] ZHU W, KOCHANSKI G P, JIN S, et al. Electron field emission from ion‐implanted diamond. [J]. Appl PhysLett, 1995, 67: 1157–1159.
[23] NUNN N, TORELLI M, MCGUIRE G, et al. Nanodiamond: A high impact nanomaterial[J]. Current Opinion in Solid State and Materials Science, 2017, 21(1): 1-9.
[24] CHOU C C, LEE S H. Rheological behavior and tribological performance of a nanodiamond-dispersed lubricant[J]. Journal of Materials Processing Technology, 2008, 201(1/2/3): 542-547.
[25] BUTLER J E, SUMANT A V. The CVD of nanodiamond materials[J]. Chemical Vapor Deposition, 2008, 14(7/8): 145-160.
[26] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology, 2012, 7(1): 11-23.
-
王志敏,苏朝化,刘朝晖. 爆轰纳米金刚石分离与纯化研究进展[J]. 超硬材料工程,2012,24(3): 30-33.
[28] SEBASTIAN O, GLEB Y, VADYM M, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air[J]. Journal of the American Chemical Society, 2006, 128: 11635–11642.
[29] EGERTON R F. Electron energy loss spectroscopy in the electron microscope[M]. US:Plenum Press, 1986.
[30] YAMAZAKI H, KATASHIMA M, BEKKU I, et al. Investigation on the microstructure of hydrogenated amorphous carbon films by electron energy-loss spectroscopy. [J]. Japanese Journal of Applied Physics, 1990, 29(Part 2, No. 11): 2108-2110.
[31] GAO C, WANG Y Y, RITTER A L, et al. Nature of carbon-carbon bonding in evaporated and ion-sputtered (Diamondlike) amorphous carbon from (e, 2 e) spectroscopy [J]. Phys Rev Lett, 1989, 62:945–948.
[32] WILLIAMS D B, CARTER C B, The transmission electron microscope [M]. US:Springer, 1996.