TWIP钢低温塑性变形机理的原位电镜研究
符晓倩,余 倩,陈江华
(1. 海南大学精密仪器高等研究中心,海洋材料表征技术创新研究院,皮米电子显微镜中心,海南海口570228;2. 浙江大学材料科学与工程学院,硅及先进半导体材料全国重点实验室,电子显微镜中心,浙江杭州310027)
摘 要 本文采用透射电镜中的原位低温拉伸测试技术,进行了-50 ℃、-120 ℃及-180 ℃下孪晶诱导塑性变形(TWIP)钢均匀塑性变形阶段的变形缺陷行为分析,研究了温度变化对于TWIP钢中的位错滑移与孪生行为的影响。研究发现,TWIP钢在-50 ℃下激活了常规滑移之外的其它滑移系;随着温度的进一步降低,TWIP钢中位错活性未发生明显下降,特别是需要热激活辅助的位错交滑移在-180 ℃下仍可发生。同时研究结果说明,低温下TWIP钢强塑性的保持由多种变形机制的共同协调作用:形变孪生、孪晶与位错相互作用、位错交滑移及其引起的位错相互作用,本质是其孪生行为与位错滑移的活性同时得到了保持。
关键词 TWIP钢;原位电镜;低温变形;位错滑移;形变孪生
中图分类号:O77; TG115 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.008
In situTEM investigation on cryogenic deformation mechanism of twinning-induced plasticity steel
FU Xiao-qian1, YU Qian2,CHEN Jiang-hua1
(1. Pico Electron Microscopy Center, Innovation Institute for Ocean Materials Characterization Technology, Center for Advanced Studies in Precision Instruments, Hainan University, Haikou Hainan 570228;2. Center of Electron Microscopy, State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Material Science and Engineering, Zhejiang University, Hangzhou Zhejiang 310027, China)
Abstract Using in situ straining tests in transmission electron microscopy, we investigate the deformation behavior of twinning-induced plasticity deformation steel during uniform plastic deformation stages at -50 ℃、-120℃and -180 ℃, and analyze the dependence of temperature on the dislocation slip and twinning behaviors. It is found that at -50 ℃, in addition to general slip systems in TWIP steel, extra slip system is activated; and with the decrease of temperature, the dislocation activities in TWIP steel behave similarly to that at room temperature, especially the cross slip of dislocation requiring thermal activation could still occur at -180 ℃. The results indicates that the maintenance of ability of twinning and dislocation slip at cryogenic temperature renders the TWIP steel deforming by coordination of multiple deformation mechanisms, including deformation twinning, cross-slip of dislocation, the cross-slip promotion dislocation interaction.
Keywords TWIP steel;in situ tensile test;cryogenic deformation;dislocation slip;deformation twinning
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] DING Q, FU X, CHEN D, et. al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures[J]. Materials Today, 2019, 25: 21-27.
[2] KIM S-K, KIM J H, KIM J H, et. al. Numerical model for mechanical nonlinearities of high manganese steel based on the elastoplastic damage model[J]. Metals, 2018, 8(9): 680.
[3] BYUN T S, HASHIMOTO N, FARRELL K. Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels[J]. Acta Materialia, 2004, 52(13): 3889-3899.
[4] NARKEVICH N, DERYUGIN Y, MIRONOV Y. Effect of the γ→ε phase transition on transformation-induced plasticity (TRIP) of nickel-free high nitrogen steel at low temperatures[J]. Metals, 2021, 11(5): 710.
[5] 陈亚, 谢盼, 伍翠兰,等. 冲击温度对Fe-25Mn-3Al-3Si钢冲击性能及其微观组织的影响[J]. 电子显微学报, 2015, 34(4): 304-312.
[6] ALLAIN S, BOUAZIZ O, CHATEAU J P. Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature[J]. Scripta Materialia, 2010, 62(7): 500-503.
[7] ARGON A S. Mechanics and physics of brittle to ductile transitions in fracture1[J]. Journal of Engineering Materials and Technology, 2000, 123(1): 1-11.
[8] ARMSTRONG R W. Theory of the tensile ductile-brittle behavior of poly-crystalline h.c.p. materials, with application to beryllium[J]. Acta Metallurgica, 1968, 16(3): 347-355.
[9] BOUAZIZ O, ALLAIN S, SCOTT C P, et. al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141-168.
[10] SAEED-AKBARI A, IMLAU J, PRAHL U, et. al. Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels[J]. Metallurgical and Materials Transactions A, 2009, 40(13): 3076-3090.
[11] FROMMEYER G, BRÜX U, NEUMANN P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International, 2003, 43(3): 438-446.
[12] GRÄSSEL O, KRÜGER L, FROMMEYER G, et. al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties -application[J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.
[13] BOUAZIZ O, GUELTON N. Modelling of TWIP effect on work-hardening[J]. Materials Science and Engineering: A, 2001, 319-321: 246-249.
[14] DINI G, NAJAFIZADEH A, MONIR-VAGHEFI S M, et. al. Predicting of mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels using neural network modeling[J]. Computational Materials Science, 2009, 45(4): 959-965.
[15] MADIVALA M, SCHWEDT A, WONG S L, et. al. Temperature dependent strain hardening and fracture behavior of TWIP steel[J]. International Journal of Plasticity, 2018, 104: 80-103.
[16] CURTZE S, KUOKKALA V T. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate[J]. Acta Materialia, 2010, 58(15): 5129-5141.
[17] FU X, WU X, YU Q. Dislocation plasticity reigns in a traditional twinning-induced plasticity (TWIP) steel by in situ observation[J]. Materials Today Nano, 2018, 3: 48-53.
[18] 陈思静, 余倩. NiCoCr高熵合金中Cr含量对其变形行为影响的原位透射电镜研究[J]. 电子显微学报, 2020, 39(6): 628-634.
[19] RASMUSSEN T. Cross slip in the face centred cubic structure: An atomistic approach [M]//L PINOUX J, MAZI RE D, PONTIKIS V, et al. Multiscale Phenomena in Plasticity: From Experiments to Phenomenology, Modelling and Materials Engineering. Dordrecht; Springer Netherlands. 2000: 281-292.