[1] HA H, YOON S, AN K, et al. Catalytic CO oxidation over Au nanoparticles supported on CeO 2 nanocrystals: Effect of the Au–CeO2 interface[J]. ACS Catal,2018, 8(12):11491-11501.
[2] SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction[J]. Angew Chem,2008,120(15):2926-2929.
[3] LU B, QUAN F, SUN Z, et al. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion[J]. Catal Commun,2019, 129:105724.
[4] TAN A, WANG F, LI H, et al. Influence of Au particle size on Au/CeO2 catalysts for CO oxidation[J]. Catal Today,2011, 175(1):541-545.
[5] WANKE S E, FLYNN P C. The sintering of supported metal catalysts[J]. Catal Rev,1975, 12(1):93-135.
[6] 谢炳炎, 吴金荣, 蔡海林, 等. 铂锡—氧化铝模型催化剂烧结的电镜研究[J]. 电子显微学报,1984, 3(4):123.
[7] HANSEN T W, DELARIVA A T, CHALLA S R, et al. Sintering of catalytic nanoparticles: Particle migration or ostwald ripening[J]? Acc Chem Res,2013, 46(8):1720-1730.
[8] BEZKROVNYI O S, KRASZKIEWICZ P, MISTA W, et al. The sintering of Au nanoparticles on flat {100}, {111} and zigzagged {111}-nanofacetted structures of ceria and its influence on catalytic activity in CO oxidation and CO PROX[J]. Catal Lett,2021, 151(4):1080-1090.
[9] LU J L, GAO H J, SHAIKHUTDINOV S, et al. Gold supported on well-ordered ceria films: Nucleation, growth and morphology in CO oxidation reaction[J]. Catal Lett,2007, 114(1/2):8-16.
[10] OUYANG R, LIU J X, LI W X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. J Am Chem Soc,2013, 135(5):1760-1771.
[11] WANG YG, MEI D, GLEZAKOU V A, et al. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles[J]. Nat Commun,2015,6(1):6511.
[12] 张丹利, 吴建东, 李雁淮, 等. 准原位透射电镜样品气体处理系统的研制及应用[J]. 电子显微学报,2022, 41(4):381-386.
[13] DAI S, ZHANG S, KATZ M B, et al. In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy[J]. ACS Catal,2017, 7(3):1579-1582.
[14] HWANG S, CHEN X, ZHOU G, et al. In situ transmission electron microscopy on energy‐related catalysis[J]. Adv Energy Mater,2020, 10(11):1902105.
[15] ZHANG X, HAN S, ZHU B, et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation[J]. Nat Catal,2020, 3(4):411-417.
[16] CAO J, RINALDI A, PLODINEC M, et al. In situ observation of oscillatory redox dynamics of copper[J]. Nat Commun,2020,11(1):3554.
[17] DAI S, YOU Y, ZHANG S, et al.In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles[J]. Nat Commun,2017, 8(1):204.
[18] SUN X, ZHU W, WU D, et al. Surface-reaction induced structural oscillations in the subsurface[J]. Nat Commun,2020,11(1):305.
[19] 夏怡泽, 欧阳, 王飞,等.环境扫描透射电子显微镜原位揭示氢溢流促进TiO2体缺陷修复机理[J]. 电子显微学报,2022, 41(4):370-380.
[20] 吴哲敏, 楼锦泽, 欧阳,等. Pd@Au核壳结构纳米颗粒在CO和O2中动态变化的原位电镜研究[J]. 电子显微学报,2019, 38(2):95-101.
[21] 盛丽萍, 王勇, 张泽. PtNi纳米颗粒在氧气中结构变化的原位电镜研究[J]. 电子显微学报,2018,37(5):391-396.
[22] 张利强, 唐永福, 刘秋男,等.原位环境透射电镜研究SnO2纳米线作为K-O2电池空气正极的放电行为[J]. 电子显微学报,2020, 39(6):621-627.
[23] 齐赫杨, 庄春强. 原位液体环境电镜观察银纳米线变纳米管过程[J]. 电子显微学报,2019, 38(3):221-227.
[24] 欧阳, 李松达, 袁文涛,等. 原位透射电镜在金属纳米颗粒氧化研究中的应用[J]. 电子显微学报,2021, 40(5):623-634.
[25] 郭思齐, 张佳琳, 程宁燕,等. 双金属合金纳米颗粒的原位透射电镜研究[J]. 电子显微学报,2022, 41(4):459-471.
[26] YUAN W, ZHANG D, OU Y, et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2[J]. Angew Chem Int Ed,2018, 57(51):16827-16831.
[27] LI G, FANG K, CHEN Y, et al. Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy[J]. J Catal,2020, 388:84-90.
[28] WETTERGREN K, SCHWEINBERGER F F, DEIANA D, et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening[J]. Nano Lett,2014, 14(10):5803-5809.
[29] WENG B, JIANG Y, LIAO H G, et al. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM[J]. Nano Res,2021, 14(8):2805-2809.
[30] YAN L, YU R, CHEN J, XING X. Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution[J]. Cryst Growth Des,2008, 8(5):1474-1477.
[31] ZANELLA R, GIORGIO S, HENRY C R, LOUIS C. Alternative methods for the preparation of gold nanoparticles supported on TiO2[J]. J Phys Chem B,2002,106(31):7634-7642.
[32] HU S, LI W X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science,2021, 374(6573):1360-1365.
[33] TAN A, LIU J (Jimmy), CHENNA S, et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring[J]. J Am Chem Soc,2012, 134(51):20585-20588.
[34] CROZIER P A, WANG R, SHARMA R. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes[J]. Ultramicroscopy,2008, 108(11):1432-1440.
[35] LIU J C, LUO L, XIAO H, et al. Metal affinity of support dictates sintering of gold catalysts[J]. J Am Chem Soc,Published online November 3, 2022:jacs.2c06785.
[36] KONG J, XIANG Z, LI G. Introduce oxygen vacancies into CeO2 catalyst for enhanced coke resistance during photothermocatalytic oxidation of typical VOCs[J]. Appl Catal B Environ,2020, 269:118755.
[37] LIN B, FANG B, WU Y, et al. Enhanced ammonia synthesis activity of ceria-supported ruthenium catalysts induced by CO activation[J]. ACS Catal,2021, 11(3):1331-1339.