金属诱导晶化(MIC)模式非晶晶化的原位透射电子显微学研究
向斐斐,李傲,范浩涵,林杨剑,程峰*,葛炳辉*
(信息材料与智能感知安徽省实验室,安徽大学杂化材料结构与功能调控教育部重点实验室,安徽大学物质科学与信息技术研究院,安徽 合肥230601)
摘要非晶晶化作为一种制备晶体材料的有效方法已得到广泛应用,近年来,采用金属诱导晶化(MIC)法显著降低材料的晶化温度引起了研究者们的兴趣。为探究MIC模式下温度对金属催化剂扩散行为及晶化过程中材料结构变化的本征影响,本研究以金属Pt诱导非晶硅晶化为例,采用透射电镜结合原位热学研究方法,在原子尺度上直接观察MIC模式下非晶硅的晶化过程。结果显示在550℃下Pt/Si界面处产生了硅化物Pt2Si等化合物,使得材料界面处出现明显的结构变化。而当温度升高至650℃时,Pt会以颗粒移动的形式发生扩散,且扩散过程中会发生明显的几何结构变化。Pt与非晶硅不同的扩散速度会导致界面处出现柯肯达尔孔洞而阻碍界面处两种材料的进一步扩散。当温度升高至700℃时,非晶硅发生晶化,且在此过程中Pt对非晶硅的晶化起了促进作用。
关键词透射电镜;原位;MIC;非晶硅
中图分类号:TG115.21+5.3;O795 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.006
Study on amorphous crystallization based on Metal Induced Crystallization (MIC) mode by in situ transmission electron microscopy
XIANG Fei-fei, LI Ao, FAN Hao-han, LIN Yang-jian, CHENG Feng*, GE Bing-hui*
(Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei Anhui 230601, China)
Abstract Amorphous crystallization has been widely used as an effective method to produce crystalline materials. In recent years, metal induced crystallization (MIC) method has attracted researchers' interest. This work investigated the intrinsic effect of temperature on the diffusion behavior of metal catalysts and the structural changes of materials during the crystallization process under MIC mode. Metal Pt induced crystallization of amorphous silicon was studied. Transmission electron microscopy combined with in-situ thermal research method was used to directly observe the crystallization process of amorphous silicon under MIC mode at the atomic scale. The results showed that silicide Pt2Si and other compounds were produced on the Pt/Si interface at 550 ℃, resulting in obvious structural changes at the interface. When the temperature was kept at 650 ℃, Pt diffused in the form of particle movement. Significant geometric changes occurred during the diffusion process. The different diffusion rates of Pt and amorphous silicon led to the appearance of Kirkendall pores at the interface, which hindered the further diffusion of the two materials at the interface. When the temperature was elevated to 700 ℃, amorphous silicon underwent crystallization, and Pt promoted the crystallization of amorphous silicon during this process.
Keywords: Transmission electron microscopy; In situ; MIC; Amorphous silicon
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] 田玮怡. 浅谈晶体与非晶体在电子材料领域中的应用[J]. 南方农机, 2018, 49(3): 126+37.
[2] MAITY G, SINGHAL R, DUBEY S, et al. Aluminum induced crystallization of amorphous Si: Thermal annealing and ion irradiation process [J]. Journal of Non-Crystalline Solids,2019, 523: 119628.
[3] 梁芮, 陈国新, 黄钦,等. 高温与电子束辐照共同作用下SiOx材料的结构演化研究[J]. 电子显微学报, 2021, 40(4): 367-372.
[4] BERGMANN R B, OSWALD G, ALBRECHT M, et al. Solid-phase crystallized Si films on glass substrates for thin film solar cells [J]. Solar Energy Materials and Solar Cells, 1997, 46(2): 147-155.
[5] KNAEPEN W, GAUDET S, DETAVERNIER C, et al.In situX-ray diffraction study of metal induced crystallization of amorphous germanium [J]. Journal of Applied Physics, 2009, 105(8): 083532.
[6] TOKO K, SUEMASU T. Metal-induced layer exchange of group IV materials [J]. Journal of Physics D: Applied Physics, 2020, 53(37): 373002.
[7] 王祖敏, 张安, 陈媛媛, 等.金属诱导晶化基础与应用研究进展[J]. 金属学报, 2020, 56(1): 66-82.
[8] ZHENG M, TAKEI K, HSIA B, et al. Metal-catalyzed crystallization of amorphous carbon to graphene [J]. Applied Physics Letters,2010, 96(6): 063110.
[9] TRIENDL F, PFUSTERSCHMIED G, SCHWARZ S, et al. Si/4H–SiC heterostructure formation using metal-induced crystallization [J]. Materials Science in Semiconductor Processing, 2021,128: 105763.
[10] KRYSHTAL A, BOGATYRENKO S, FERREIRA P. Metal-induced crystallization of amorphous semiconductor films: Nucleation phenomena in Ag-Ge films [J]. Applied Surface Science, 2022, 606: 154873.
[11] TABORDA J A, ROMERO J J, ABAD B, et al. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering [J]. Nanotechnology, 2016, 27(17): 175401.
[12] ZAMCHIY A O, BARANOV E A, STARINSKIY S V, et al. Fabrication of polycrystalline silicon thin films by gold-induced crystallization of amorphous silicon suboxide [J]. Vacuum, 2021,192: 110462.
[13] HUANG J-J, LIN C-C, WUU D-S. Synthesis of silver nanoparticles by chemical reduction method and its metal induced crystallization of poly-Si thin film application [J]. Materials Research Express, 2014, 1(4): 046401.
[14] KNAEPEN W, DETAVERNIER C, VAN MEIRHAEGHE R L, et al. In-situ X-ray diffraction study of metal induced crystallization of amorphous silicon [J]. Thin Solid Films, 2008, 516(15): 4946-4952.
[15] JIN Z, BHAT G A, YEUNG M, et al. Nickel induced crystallization of amorphous silicon thin films [J]. Journal of Applied Physics, 1998, 84(1): 194-200.
[16] MIYASAKA M, MAKIHIRA K, ASANO T, et al.In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films [J]. Applied Physics Letters, 2002, 80(6): 944-946.
[17] WANG J Y, WANG Z M, MITTEMEIJER E J. Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers [J]. Journal of Applied Physics, 2007, 102(11): 113523.
[18] WANG Z M, WANG J Y, JEURGENS L P H, et al. Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers [J]. Physical Review B, 2008, 77(4): 045424.1-045424.15.
[19] WANG Z M, WANG J Y, JEURGENS L P, et al. Tailoring the ultrathin Al-induced crystallization temperature of amorphous si by application of interface thermodynamics [J]. Phys Rev Lett, 2008, 100(12): 125503.
[20] JANG J. Electric-field-enhanced crystallization of amorphous silicon [J]. Nature,1998, 395(6701): 481-483.
[21] YOON S Y, PARK S J, KIM K H, et al. Metal-induced crystallization of amorphous silicon [J]. Thin Solid Films, 2001, 383(1/2): 34-38.
[22] KRAUSE B, ABADIAS G, FURGEAUD C, et al. Interfacial Silicide Formation and Stress Evolution during Sputter Deposition of Ultrathin Pd Layers on a-Si [J]. ACS Appl Mater Interfaces, 2019, 11(42): 39315-39323.
[23] MAN W, ZHONGHE J, BHAT G A, et al. Characterization of the MIC/MILC interface and its effects on the performance of MILC thin-film transistors [J]. IEEE Transactions on Electron Devices, 2000, 47(5): 1061-1067.
[24] LINDORF M, ROHRMANN H, SPAN G, et al. Effect of Percolation on Structural and Electrical Properties of MIC Processed SiGe/Al Multilayers [J]. Journal of Electronic Materials, 2015, 45(3): 1730-1733.
[25] MINENKOV A, GROISS H. Evolution of phases and their thermal stability in Ge–Sn nanofilms: a comprehensive in situ TEM investigation [J]. Journal of Alloys and Compounds, 2021, 859: 157763.
[26] RAM R P, BHAN S. On the constitution of platinum-silicon alloys [J]. International Journal of Materials Research, 1978, 69(8): 524-529.
[27] HAYZELDEN C, BATSTONE J L, CAMMARATA R C. Insitutransmission electron microscopy studies of silicide‐mediated crystallization of amorphous silicon [J]. Applied Physics Letters, 1992, 60(2): 225-227.
[28] HAYZELDEN C, BATSTONE J L. Silicide formation and silicide‐mediated crystallization of nickel‐implanted amorphous silicon thin films [J]. Journal of Applied Physics, 1993, 73(12): 8279-8289.
[29] KIM K H, PARK S J, KIM S H, et al. Cross-sectional TEM study on Ni-mediated crystallization of amorphous silicon [J]. Journal of Non-Crystalline Solids, 2006, 352(9-20): 976-979.
[30] WANG Z, GU L, JEURGENS L P, et al. Real-time visualization of convective transportation of solid materials at nanoscale [J]. Nano Lett, 2012, 12(12): 6126-6132.
[31] LIN Y, WU X, LI Y, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique [J]. Nano Energy, 2022, 102: 107736.