AZ91镁合金中变形孪晶与析出相交互作用结构的电子显微学研究
曹志坚,刘林林,孙鹏阳,黄子坤,刘翠秀,孙 威*
(北京工业大学固体微结构与性能研究所,北京100124)
摘 要 本文综合利用TEM及HRTEM电子显微表征技术,对冲击变形时效AZ91镁合金中变形孪晶与β-Mg17Al12析出相交互作用引发的变形结构进行了观察和表征。结果表明:(1) β析出相阻碍{ 1012 }孪晶生长使其界面形成台阶结构导致孪晶板条呈现粗细不均的形貌,更严重的交互作用可导致孪晶界发生大角度弯折,同时诱发基体中扭折带的形成以协调孪晶变形;(2) { 1012 }孪晶与β析出相的交互作用会产生局域应力集中,导致连锁诱发{ 1012 }孪晶形核,表明孪晶与析出相的交互作用可以促进孪晶形核。
关键词 AZ91镁合金;变形孪晶;析出相;交互作用;电子显微技术
中图分类号:TG146.2+2;TG115.21+5.3 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.005
Electron microscopy investigation on the interaction structure of deformation-twin and precipitates in an AZ91 alloy
CAO Zhi-jian,LIU Lin-lin,SUN Peng-yang,HUANG Zi-kun,LIU Cui-xiu,SUN Wei*
(Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China)
Abstract In this paper, the deformation microstructures induced by the interaction of different types of twins with β-Mg17Al12 precipitates (β-phase) in shock-loaded AZ91 magnesium alloy was investigated by transmission electron microscope (TEM). The results show that the growth of { 1012} twins can be hindered by β-phases. The step structure was formed at the twin boundaries, resulting in uneven morphologies of twin laths. The higher interaction between twin and precipitate further leaded to the twin boundary to be bent to a large angle with local kinking occurring to accommodate the local stress concentration. In addition, the interaction between {1012 } twin and β precipitates generated the local stress concentration, inducing the nucleation of{1012 } twins, indicating that the interaction between twins and precipitates can promote the nucleation twinning.
Keywords magnesium alloy;deformation twins;precipitated phase;interaction, electron microscopy
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] 徐红霞,张修丽. 21世纪的绿色环保材料—镁合金[J]. 上海工程技术大学学报,2007(4): 322-325.
[2] 王春鹏. 孪生变形对AZ系镁合金析出相的调控机制及性能研究[D]. 重庆:重庆大学,2018.
[3] SONG J,SHE J,CHEN D,et al. Latest research advances on magnesium and magnesium alloys worldwide[J]. Journal of Magnesium and Alloys,2020,8(1): 1-41.
[4] YEGANEH M,MOHAMMADI N. Superhydrophobic surface of Mg alloys[J]. Journal of Magnesium and Alloys,2018,6(1): 59-70.
[5] 屈伟平,高崧. 镁合金的特点及应用现状[J]. 金属世界,2011(2): 10-14.
[6] DONG S,YU Q,JIANG Y,et al. Characteristic cyclic plastic deformation in ZK60 magnesium alloy[J]. International Journal of Plasticity,2017:25-47.
[7] 泰靖,周博,隋曼龄.AZ31 镁合金形变扭折带中{ }孪生行为的电子显微学研究[J].电子显微学报,2017,36(6) : 547-551.
[8] LI L,WANG S,XIAO L,et al. Atomic-scale three-dimensional structural characterisation of twin interface in Mg alloys[J]. Philosophical Magazine Letters, 2020, 100(7a9).
[9] MISES R V. Mechanik der plastischen formänderung von kristallen[J]. ZAMM-Journal of Applied Mathematics and Mechanics:Zeitschrift für angewandte Mathematik und Mechanik, 2006, 8(3):161-185.
[10] 毕建军,刘翠秀,李万鹏,等.Mg-Y 合金中共轴{ }孪晶交互的电子显微研究[J]. 电子显微学报,2019,38( 5) : 496-501.
[11] CHEN X,XIAO L,LIU Y,et al. High strength-ductility of heterogeneous sandwich Mg–Y alloys produced by high pressure torsion[J]. Vacuum, 2020, 179:109568.
[12] XU M,LI N,SHA X,et al. In-situ TEM observations on interaction of basal dislocations and β′ phases in a Mg–Gd binary alloy[J]. Materials Science and Engineering: A,2022,841:143017.
[13] 李万鹏,刘翠秀,陈斌,等.Mg-Y-Nd 合金{ }孪晶界面稀土原子偏聚的电子显微研究[J].电子显微学报,2018,37( 6) : 563-570.
[14] XIAO L,CHEN X,WEI K,et al. Effect of dislocation configuration on Ag segregation in subgrain boundaryofa Mg-Ag alloy[J]. Scripta Materialia,2021,191:219-224.
[15] NIE J F.Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J].Scripta Materialia,2003,48( 8) : 1009-1015.
[16] JAIN J,POOLE W J, SINCLAIR C W, et al. Reducing the tension-compression yield asymmetry in a Mg-8Al-0.5Zn alloy via precipitation [J]. Scripta Materialia,2010,62 (5):301-304.
[17] STANFORD N, GENG J, CHUN Y B, et al. Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in tension and compression [J]. Acta Materialia,2012,60 (1): 218-228.
[18] ROBSON J D. The effect of internal stresses due to precipitates on twin growth in magnesium [J]. Acta Materialia,2016, 121:277-287.
[19] LI B, MATHAUDHU S N. Interaction between a Mg17Al12 precipitate and { }< > twin boundary in magnesium alloys[A]. In: Hort N, Mathaudhu S N, Neelameggham N R, et al.Magnesium Technology 2013[C]. Cham: Springer, 2013. 89-94.
[20] LIU F, XIN R, ZHANG M X, et al. Evaluating the orientation relationship of prismatic precipitates generated by detwinning in Mg alloys[J]. Acta Materialia,2020,195:263-273.
[21] GHRAGHOURI M A, WEATHERLY G C, EMBURY J D. The interaction of twins and precipitates in a Mg-7.7 at. % Al alloy [J]. Philosophical Magazine A,1998, 78 (5): 1137-1149.
[22] ROBSON J D,BARNETT M R. The effect of precipitates on twinning in magnesium alloys[J]. Advanced Engineering Materials,2019,21(4): 1800460.
[23] 孙鹏阳, 刘林林, 孙威,等. Mg-Zn合金中{ }孪生剪切与析出相相互作用结构的电子显微研究[J].电子显微学报, 2021, 40(5):6.
[24] ZHOU J P, ZHAO D S, WANG R H, et al. In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy[J]. Materials Letters,2007,61(25):4707-4710.
[25] NIE J F, XIAO X L, LUO C P, et al. Characterization of precipitate phases in magnesium alloys using electron microdiffraction[J]. 2001, 32(8):857-863.
[26] CELOTTO S. TEM study of continuous precipitation in Mg-9 wt.%Al-1 wt.% Zn alloy [J]. Acta Materialia, 2000, 48(8):1775-1787.
[27] YOSHINAGA H, HORIUCHI R. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis [J]. Transactions of the Japan Institute of Metals, 1963, 4(1): 1-8.
[28] 韩广达. Mg-Y-Nd-Zn镁合金冲击变形结构特征的电子显微研究[D]. 北京:北京工业大学.
[29] 汪涛, 孙威, 王子荣,等. Mg-Y-Nd-Zn合金中鲜见变形孪晶带的形成及结构特征[J]. 稀有金属, 2017, 41(8):6.
[30] CHRISTIAN J W, MAHAJAN S. Deformation twinning [J]. Progress in Materials Science,1995,39:23-31.