二维半导体异质结MoS2/MoSe2中一维量子阱形成机制的电子显微学研
庞靖博,时金安,李 昂,李林璇,朱俊桐*,周 武
(中国科学院大学,物理科学学院,北京100049)
摘 要 本文使用两步化学气相沉积法(CVD)成功合成了单层二维半导体MoS2/MoSe2面内异质结,通过扫描透射电子显微学(STEM)对异质结中不同类型的量子阱进行了原子尺度结构和局域应力分析,探索了二维半导体材料中,不同结构特征处诱导形成一维量子阱结构的机理。主要包括:1)晶格失配的二维半导体异质结界面处周期性位错阵列诱导形成的量子阱超晶格;2)二维半导体晶格内非60°晶界所包含的周期性位错诱导形成周期可控的量子阱超晶格;3)由连续4|8元环结构组成的60°晶界诱导形成的超长单一量子阱结构。
关键词 MoS2/MoSe2异质结;位错;应力;量子阱;低电压STEM
中图分类号:O76;TG115.21+5.3 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.004
Electron microscopy study of the formation mechanism of one-dimensional quantum well in two-dimensional semiconductor MoS2/MoSe2 heterostructures
PANG Jing-bo,SHI Jin-an,LI Ang, LI Lin-xuan,ZHU Jun-tong*,ZHOU Wu
(School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract In this paper, we reported the successful synthesis of a monolayer two-dimensional (2D) semiconductor MoS2/MoSe2 lateral heterostructure by a two-step chemical vapor deposition (CVD) method. The atomic-scale structure and local strain distribution of various types of quantum wells obtained in this lateral MoS2/MoSe2 heterostructure were systematically analyzed by aberration-corrected low-voltage scanning transmission electron microscopy (STEM) to explore the formation mechanism of 1D quantum well structures at different structural features in the 2D semiconductor lattice. The exploration mainly included: 1) MoS2 quantum well superlattices induced by the periodic mis-fit dislocation arrays at the lateral hetero-interface with mismatched lattices; 2) MoS2 quantum well superlattices with controlled period induced by the periodic dislocation arrays at non-60° grain boundaries in the MoSe2 lattice; and 3) ultra-long isolated quantum wells induced by 60° grain boundaries consisting of continuous 4|8 membered ring structures.
Keywords MoS2/MoSe2 heterostructure; dislocation; strain; quantum well; low-voltage STEM
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] YANG R, MEI L, ZHANG Q, et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method [J]. Nature Protocols, 2022, 17 (2): 358-377.
[2] ZHU Z-L, LIU Z-L, WU X, et al. Charge density wave states in phase-engineered monolayer VTe2 [J]. Chinese Physics B, 2022, 31 (7): 077101.
[3] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS2 transistors with 1-nanometer gate lengths [J]. Science, 2016, 354 (6308): 99-102.
[4] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10 (4): 216-226.
[5] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2 [J]. Nature Nanotechnology, 2013, 8 (7): 497-501.
[6] ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance in WTe2 [J]. Nature, 2014, 514 (7521): 205-208.
[7] SIMPSON R E, FONS P, KOLOBOV A V, et al. Interfacial phase-change memory [J]. Nature Nanotechnology, 2011, 6 (8): 501-505.
[8] GROSSE C, ALEMAYEHU M B, FALMBIGL M, et al. Superconducting ferecrystals: turbostratically disordered atomic-scale layered (PbSe)1.14(NbSe2)n thin films [J]. Scientific Reports, 2016, 6 (1): 33457.
[9] MOLINA-MENDOZA A J, GIOVANELLI E, PAZ W S, et al. Franckeite as a naturally occurring van der waals heterostructure [J]. Nature Communications, 2017, 8 (1): 14409.
[10] ZHOU W, ZHANG Y Y, CHEN J, et al. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices [J]. Science Advances, 2018, 4 (3): eaap9096.
[11] HAN Y, LI M-Y, JUNG G-S, et al. Sub-nanometre channels embedded in two-dimensional materials [J]. Nature Materials, 2018, 17 (2): 129-133.
[12] ZHOU W, ZOU X, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide [J]. Nano Letters, 2013, 13 (6): 2615-2622.
[13] ZHU C, YU M, ZHOU J, et al. Strain-driven growth of ultra-long two-dimensional nano-channels [J]. Nature Communications, 2020, 11 (1): 772.
[14] 时金安, 胡书广, 夏艳, 等. 单色球差校正扫描透射电子显微镜的实验室设计[J]. 电子显微学报, 2020, 39 (6): 715-721.
[15] 许名权, 李傲雯, 周武. 低电压STEM-EELS 在纳米催化剂结构表征中的应用[J]. 电子显微学报, 2020, 39 (5): 536-542.
[16] CHEN S-Y, ZHENG C, FUHRER M S, et al. Helicity-resolved raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic Layers [J]. Nano Letters, 2015, 15 (4): 2526-2532.
[17] ZHOU W, ZOU X, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide [J]. Nano Letters, 2013, 13(6): 2615-2622.
[18] LIN Y-C, KARTHIKEYAN J, CHANG Y-P, et al. Formation of highly doped nanostripes in 2D transition metal dichalcogenides via a dislocation climb mechanism [J]. Advanced Materials, 2021, 33 (12): 2007819.
[19] ZHOU J, LIN J, SIMS H, et al. Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting [J]. Advanced Materials, 2020, 32 (11): 1906536.