钙钛矿LaNiO3热烧结过程中相转变机理的研究
刘涵钰#,朱 柳#,张宇中,陈 越,史博文,胡 阳,彭 勇*
(1. 兰州大学材料与能源学院&兰州大学电镜中心,甘肃兰州730000;2.兰州大学物理科学与技术学院,甘肃兰州730000;3.兰州大学化学化工学院&兰州大学电镜中心,甘肃兰州730000)
摘 要 本文针对钙钛矿结构的LaNiO3在热烧结过程中物相转变机制,利用离位及原位电镜结合宏观光谱进行了观测和分析研究。实验结果表明,通过静电纺丝法制备的PVP/PAN/Ni(NO3)2/La(NO3)3前驱体纤维能够通过高温烧结形成LaNiO3的钙钛矿结构。研究发现在温度作用下,晶体生长过程中碳聚合物基体不断受热分解,浸渍在聚合物基体上的金属离子受热与气氛中的氧结合,形成氧化物晶胚,呈现典型的奥斯瓦尔德熟化生长过程,在600℃左右,LaNiO3的晶体相生成,随着温度的进一步升高,晶粒互相融合形成了纳米颗粒堆垛成的一维LaNiO3纳米线。实验揭示了LaNiO3纳米线的微观生长机制,为材料的生长调控和性能改性提供了思路。
关键词 钙钛矿结构;物相转变;奥斯瓦尔德熟化生长;原位电子显微学
中图分类号:076;0614;TG115. 21+5. 3 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.003
Study on phase formation process and doping modification of perovskite type composite oxide materials
LIU Han-yu1#,ZHU Liu1#,ZHANG Yu-zhong2,CHEN Yue1,SHI Bo-wen1,HU Yang3,PENG Yong1*
(1. College of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou Gansu 730000;2. School of Physical and Technology of Lanzhou University, Lanzhou Gansu 730000;3. College of Chemistry and Chemical Engineering and Electron Microscopy Centre of Lanzhou University, Lanzhou Gansu 730000,China)
Abstract This article focused on the phase transition mechanism of LaNiO3 with a perovskite structure during the hot sintering process, which was observed and analyzed by ex-situ and in-situ electron microscopy combined with a macroscopic spectroscopy. The experimental results indicated that the precursor fibers of PVP/PAN/Ni(NO3)2/La(NO3)3 prepared by electrospinning formed a LaNiO3 perovskite structure . Under the high-temperature sintering, the carbon polymer matrix was continuously decomposed during the crystal growth process. The metal ions immersed in the polymer matrix were heated and combined with oxygen in the atmosphere to form oxide crystal embryos, showing a typical Ostwald ripening growth process. At about 600 ℃, the LaNiO3 crystal phase was generated. With the further increase of temperature, the grains fused with each other to form one-dimensional LaNiO3 nanowires stacked with nanoparticles. The experiment revealed the micro growth mechanism of LaNiO3 nanowires, providing ideas for the growth regulation and performance modification of materials.
Keywords perovskite structure;phase transition;Oswald ripening mechanism;in-situelectron microscopy
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] WONG F. Electronic transitions in perovskite oxide heterostructures[D]. Berkeley:University of California, 2011.
[2] KUBICEK M, BORK A H, RUPP J. Perovskite oxides – a review on a versatile material class for solar-to-fuel conversion processes[J]. Journal of Materials Chemistry A, 2017, 5:11983-12000.
[3] TANAKA H, MISONO M. Advances in designing perovskite catalysts[J]. Current Opinion in Solid State & Materials Science, 2001, 5: 381-387.
[4] 李红利, 张军伟, 朱柳, 等. 稀土正铁氧体YFeO3的原子尺度离子占位解析及磁学性能研究[J]. 电子显微学报, 2021, 40(5):543-549.
[5] BOGDANOVA K G, BULATOV A R, GOLENISHCHEV-KUTUZOV V A, et al. Effect of Jahn-Teller distortions on the structural and magnetic ordering in perovskite-type transition-metal oxides[J]. Bulletin of the Russian Academy of Sciences Physics, 2008, 72(8):1159-1161.
[6] 秦善, 王汝成. 钙钛矿(ABX3)型结构畸变的几何描述及其应用[J]. 地质学报, 2004, 3:345-351.
[7] RICHTER J, HOLTAPPELS P, GRAULE T. et al. Materials design for perovskite SOFC cathodes[J]. Monatshefte Fur Chemie, 2009, 140:985-999.
[8] RISCH M. Perovskite electrocatalysts for the oxygen reduction reaction in alkaline media[J]. Catalysts, 2017, 7(5):154.
[9] KWEI G H, LAWSON A C, BILLINGE S, et al. Structures of the ferroelectric phases of barium titanate[J]. Journal of Physical Chemistry C, 1993, 97(10): 2368-2377.
[10] 汪仁, 郭养浩, 卢鸿业. 钙钛矿型稀土催化剂及其氧化性能的研究——Ⅰ.催化剂制备方法和烧成过程的研究[J]. 燃料化学学报, 1982, 000(1):22-36.
[11] ZHU Y, ZHOU W, ZHONG Y, et al. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting[J]. Advanced Energy Materials, 2017, 7(8):1602122.
[12] WANG Y, REN J, WANG Y, et al. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion[J]. The Journal of Physical Chemistry C, 2014, 112(39):15293-15298.
[13] XU J, JIAN L, ZHAO Z, et al. Three-dimensionally ordered macroporous LaCoxFe1-xO3 perovskite-type complex oxide catalysts for diesel soot combustion[J]. Catalysis Today, 2010, 153(3):136-142.
[14] WANG Z L, KE X X, ZHOU K L, et al. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2021, 9: 18535.
[15] 赵喆, 卢岳, 张振华, 等. 原位透射电子显微镜观察电荷驱动的氧化物纳米颗粒水中自组装[J]. 物理化学学报, 2019, 35(5):7.
[16] ZHANG G Q, YU L, WU H B. et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries[J]. Advanced Materials, 2012, 24(34): 4609-4613.
[17] YUN Y H, KIM K, LEE C, et al. Electrochemical partial reduction of Ni(OH)2 to Ni(OH)2/Ni via coupled oxidation of an interfacing NiAl intermetallic compound for robust hydrogen evolution[J]. Journal of Energy Chemistry, 2023, 82:560-571.
[18] WANG J, NI G H, LIAO W R, et al. Subsurface engineering induced fermi level de-pinning in metal oxide semiconductors for photoelectrochemical water splitting[J]. Angewandte Chemie International Edition, 2023, 62:e202217026.
[19] 胡阳, 朱柳, 李红利, 等. 钴镍合金纳米颗粒的合成及孪晶结构形成机理的电镜原位研究[J].电子显微学报, 2021, 40(5):515-521.
[20] 韩宇, 朱倍恩, 高嶷. 多尺度模拟环境电子显微镜下Pd纳米颗粒在N2气氛中构型[J]. 电子显微学报, 2021, 40(2):221-227.
[21] 林璋, 吴智诚, 庄赞勇, 等. 纳米科学与技术:纳米材料生长动力学及其环境应用[M].北京:科学出版社, 2015:183-200.
[22] KIKKAWA J, HOSONO E, OKUBO M, et al. Single-crystallization of olivine lithium-phosphate nanowires using oriented attachments[J].Journal of Physical Chemistry C, 2014, 118: 7678−7682.