室温下β-Ga2O3纳米柱的脆韧转变研究
李佩,赵培丽,胡捷,吴姗姗,黄瑞龙,王佳恒,郑赫*,贾双凤,王建波*
(1.武汉大学物理科学与技术学院,电子显微镜中心,人工微结构教育部重点实验室和高等研究院,湖北,武汉430072;2. 武汉大学深圳研究院,广东 深圳518057;3. 武汉大学科研公共服务条件平台,湖北 武汉 430072)
摘 要 β-Ga2O3的力学性能关系到相关电子器件的制造、封装以及应用,然而目前关于β-Ga2O3单晶的力学变形机制研究还相对匮乏。本文研究了(100) β-Ga2O3单晶在压应力作用下的力学行为,发现其极易沿着(100)B面脆断,并计算得到该材料的断裂应力范围为314.1 ~ 615.1 MPa。进一步揭示了不同长径比、不同直径对β-Ga2O3纳米柱力学变形行为的影响,实验结果表明:当长径比>2时,β-Ga2O3纳米柱在不同直径下均沿着(100)B面发生脆断;当长径比<2且直径<200 nm时,(100) β-Ga2O3发生脆性向塑性的转变,表现为先沿着 面发生滑移,之后沿着(100)B面断裂。最后,讨论了晶体学取向对于小尺寸β-Ga2O3塑性的影响,研究结果为理解β-Ga2O3的力学性能提供借鉴。
关键词 β-Ga2O3;脆韧转变;力学研究;透射电子显微镜
中图分类号:TG115. 21+ 5.3;O766+.1;O799;O722+.4;O739 文献标识码:A doi:10.3969/j.issn.1000-6281.2024.01.002
Brittle-to-ductile transition of β-Ga2O3 nanopillars at room temperature
LI Pei1, ZHAO Pei-li1, HU Jie1,WU Shan-shan1, HUANG Rui-long1,
ZHENG He1,2*, JIA Shuang-feng1, WANG Jian-bo1,3*
(1. School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan Hubei 430072; 2. Wuhan University Shenzhen Research Institute, Shenzhen Guangdong 518057; 3. Core Facility of Wuhan University, Wuhan Hubei 430072, China)
Abstract The fabrication, packaging, and application of β-Ga2O3-based devices is limited by their mechanical properties, while the basic understanding of the mechanical deformation mechanism of the (100) β-Ga2O3 is still lacking. Herein, we presented a systematic research on the mechanical behaviors of (100) β-Ga2O3 nanopillars. The nanopillars were fractured easily along the (100)B plane with a fracture stress from 314.1 ~ 615.1 MPa. Meanwhile, the effect of different aspect ratios and diameters on the deformation behavior was further discussed. The plasticity in the small-sized (100) β-Ga2O3 was also investigated. The results showed that β-Ga2O3 nanopillars exhibited a brittle fracture along the (100)B plane when the aspect ratio was larger than 2. In contrast, when the aspect ratio was lower than 2, the nanopillars (d < 200 nm) showed the brittle to ductile transition, as manifested by the initial slipping along the plane and the fracture along the (100)B plane. Finally, the effect of the crystallographic orientation on the plasticity of small-sized nanopillars was discussed, which lays the foundation for the potential application of the extremely brittle β-Ga2O3 in nanodevices.
Keywords:β-Ga2O3;brittle-to-ductile transition;mechanical deformation mechanism;transmission electron microscopy
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] TIPPINS H H. Optical absorption and photoconductivity in the band edge of β−Ga2O3 [J]. Physical Review, 1965, 140(1A): A316-A319.
[2] 胡捷, 王佳恒, 李凯旋, 等. 超薄SnO2/Ga2O3/SnO2异质结构的原子尺度表征与热稳定性研究[J]. 电子显微学报, 2022, 41(4): 399-406.
[3] GREEN A J, SPECK J, XING G, et al. β-Gallium oxide power electronics [J]. APL Materials, 2022, 10(2): 029201.
[4] ZHANG B, LIN H J, GAO H, et al. Perovskite-sensitized β-Ga2O3 nanorod arrays for highly selective and sensitive NO2 detection at high temperature [J]. Journal of Materials Chemistry A, 2020, 8(21): 10845-10854.
[5] 钟维, 王鹏伟, 韩晓冰, 等. 基于氧化镓纳米线阵列的气体探测器研究[J]. 电子显微学报, 2014, 33(1): 7-13.
[6] CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors [J]. Photonics Research, 2019, 7(4): 381-415.
[7] KAUR D,KUMAR M. A strategic review on gallium oxide based deep‐ultraviolet photodetectors: recent progress and future prospects [J]. Advanced Optical Materials, 2021, 9(9): 2002160.
[8] XU J,ZHENG W,HUANG F. Gallium oxide solar-blind ultraviolet photodetectors: A review [J]. Journal of Materials Chemistry C, 2019, 7(29): 8753-8770.
[9] ZHAO W, YANG Y, HAO R, et al. Synthesis of mesoporous β-Ga2O3 nanorods using PEG as template: Preparation, characterization and photocatalytic properties [J]. Journal of Hazardous Materials, 2011, 192(3): 1548-1554.
[10] YAMAKATA A, VEQUIZO J J M, OGAWA T, et al. Core–shell double doping of Zn and Ca on β-Ga2O3 photocatalysts for remarkable water splitting [J]. ACS Catalysis, 2021, 11(4): 1911-1919.
[11] JU M-G, WANG X, LIANG W, et al. Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: mixed-phase junctions [J]. Journal of Materials Chemistry A, 2014, 2(40): 17005-17014.
[12] WU Y Q, GAO S, KANG R K, et al. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars [J]. Journal of Materials Science, 2018, 54(3): 1958-1966.
[13] WU Y Q,GAO S,HUANG H. The deformation pattern of single crystal β-Ga2O3 under nanoindentation [J]. Materials Science in Semiconductor Processing, 2017, 71: 321-325.
[14] WANG Y, LI X, WU Y, et al. The removal mechanism and force modelling of gallium oxide single crystal in single grit grinding and nanoscratching [J]. International Journal of Mechanical Sciences, 2021, 204: 106562.
[15] GAO S, WU Y, KANG R, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing, 2018, 79: 165-170.
[16] LAWN B R, HUANG H, LU M, et al. Threshold damage mechanisms in brittle solids and their impact on advanced technologies [J]. Acta Materialia, 2022, 232: 117921.
[17] HOWIE P R,KORTE S,CLEGG W J. Fracture modes in micropillar compression of brittle crystals [J]. Journal of Materials Research, 2011, 27(1): 141-151.
[18] ÖSTLUND F, RZEPIEJEWSKA-MALYSKA K, LEIFER K, et al. Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature [J]. Advanced Functional Materials, 2009, 19(15): 2439-2444.
[19] ÖSTLUND F, HOWIE P R, GHISLENI R, et al. Ductile–brittle transition in micropillar compression of GaAs at room temperature [J]. Philosophical Magazine, 2011, 91(7/8/9): 1190-1199.
[20] FAN S, LI X, FAN R, et al. Size-dependent fracture behavior of GaN pillars under room temperature compression [J]. Nanoscale, 2020, 12(45): 23241-23247.
[21] KORTE S, RITTER M, JIAO C, et al. Three-dimensional electron backscattered diffraction analysis of deformation in MgO micropillars [J]. Acta Materialia, 2011, 59(19): 7241-7254.
[22] GUO J J, MADHAV REDDY K, HIRATA A, et al. Sample size induced brittle-to-ductile transition of single-crystal aluminum nitride [J]. Acta Materialia, 2015, 88: 252-259.
[23] WU Y, RAO Q, BEST J P, et al. Superior room temperature compressive plasticity of submicron beta‐phase gallium oxide single crystals [J]. Advanced Functional Materials, 2022, 32(48): 2207960.
[24] FUJIKANE M, NAGAO S, CHROBAK D, et al. Room-temperature plasticity of a nanosized GaN crystal [J]. Nano Letters, 2021, 21(15): 6425-6431.
[25] SU J, ZHANG J, GUO R, et al. Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3 [J]. Materials and Design, 2019, 184: 108197.
[26] PEELAERS H,VAN DE WALLE C G. Lack of quantum confinement in Ga2O3 nanolayers [J]. Physical Review B, 2017, 96(8): 081409.
[27] BARMAN S K,HUDA M N. Mechanism behind the easy exfoliation of Ga2O3 ultra‐thin film along (100) surface [J]. Physica Status Solidi–Rapid Research Letters, 2019, 13(5): 1800554.
[28] KIM J, OH S, MASTRO M A, et al. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics [J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15760-15764.
[29] AHN S, REN F, KIM J, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors [J]. Applied Physics Letters, 2016, 109(6): 062102.
[30] HWANG W S, VERMA A, PEELAERS H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes [J]. Applied Physics Letters, 2014, 104(20): 203111.
[31] 田琳,付琴琴,单智伟. 聚焦离子束在微纳尺度材料力学性能研究中的应用[J]. 中国材料进展, 2013, 32(12): 706-715.
[32] 彭开武. FIB/SEM双束系统在微纳米材料电学性能测试中的应用[J]. 电子显微学报, 2016, 35(1): 75-80.
[33] 付琴琴,单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, 35(1): 81-89.
[34] 李雷, 贾双凤, 文广玉, 等. 金属氧化物缺陷结构与微观力学形变机制[J]. 电子显微学报, 2020, 39(6): 642-649.