[1] ROZIER P, TARASCON J M. Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges [J]. J Electrochem Soc, 2015, 162(14): A2490-A2499.
[2] WANG J, HE X, PAILLARD E, et al. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries [J]. Adv Energy Mater, 2016, 6(21): 1600906.
[3] YAN P, ZHENG J, ZHANG J G, et al. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode [J]. Nano Lett, 2017, 17(6): 3946-3951.
[4] ZHENG J, MYEONG S, CHO W, et al. Li- and Mn-rich cathode materials: Challenges to commercialization [J]. Adv Energy Mater, 2017, 7(6): 1601284.
[5] MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives [J]. Adv Energy Mater, 2016, 6(1): 1501010.
[6] HAUSBRAND R, CHERKASHININ G, EHRENBERG H, et al. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches [J]. Materials Science and Engineering: B, 2015, 192(Supplement C): 3-25.
[7] LIU H, WOLF M, KARKI K, et al. Intergranular cracking as a major cause of long-term capacity fading of layered cathodes [J]. Nano Lett, 2017, 17(6): 3452-3457.
[8] YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J]. Nat Commun, 2017, 8: 14101.
[9] RYU H-H, PARK K-J, YOON C S, et al. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6 ≤x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? [J]. Chem Mater, 2018, 30(3): 1155.
[10] ZHOU Y-N, MA J, HU E, et al. Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries [J]. Nat Commun, 2014, 5: 5381.
[11] RADIN M D, HY S, SINA M, et al. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials [J]. Adv Energy Mater, 2017, 7(20): 1602888-n/a.
[12] REIMERS J N, DAHN J R. Electrochemical and in situ X‐ray diffraction studies of lithium Intercalation in LixCoO2 [J]. J Electrochem Soc, 1992, 139(8): 2091-2097.
[13] OHZUKU T, UEDA A. Solid‐state redox reactions of LiCoO2 (R3̅m) for 4 volt secondary lithium Cells [J]. J Electrochem Soc, 1994, 141(11): 2972-2977.
[14] AMATUCCI G G, TARASCON J M, KLEIN L C. CoO2, the end member of the LixCoO2 solid solution [J]. J Electrochem Soc, 1996, 143(3): 1114-1123.
[15] YANG X Q, SUN X, MCBREEN J. New findings on the phase transitions in Li1-xNiO2: In situ synchrotron X-ray diffraction studies [J]. Electrochem Commun, 1999, 1(6): 227-232.
[16] ARAI H, TSUDA M, SAITO K, et al. Structural and thermal characteristics of nickel dioxide derived from LiNiO2 [J]. J Solid State Chem, 2002, 163(1): 340-349.
[17] DOLOTKO O, SENYSHYN A, MUHLBAUER M J, et al. Understanding structural changes in NMC Li-ion cells by in situ neutron diffraction [J]. J Power Sources, 2014, 255: 197-203.
[18] YIN S C, RHO Y H, SWAINSON I, et al. X-ray/neutron diffraction and electrochemical studies of lithium De/Re-Intercalation in Li1-xCo1/3Ni1/3Mn1/3O2 (x = 0 → 1) [J]. Chem Mater, 2006, 18(7): 1901-1910.
[19] WANG H, JANG Y I, HUANG B, et al. TEM study of electrochemical cycling‐induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries [J]. J Electrochem Soc, 1999, 146(2): 473-480.
[20] GABRISCH H, YAZAMI R, FULTZ B. The character of dislocations in LiCoO2 [J]. Electrochem Solid-State Lett, 2002, 5(6): A111-A114.
[21] SINGER A, ZHANG M, HY S, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging [J]. Nat Energy, 2018, 3(8): 641-647.
[22] ULVESTAD A, SINGER A, CLARK J N, et al. Topological defect dynamics in operando battery nanoparticles [J]. Science, 2015, 348(6241): 1344-1347.
[23] GONG Y, ZHANG J, JIANG L, et al. In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 cathode in a working all-solid-state battery [J]. J Am Chem Soc, 2017, 139(12): 4274-4277.
[24] YAN P, ZHENG J, CHEN T, et al. Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode [J]. Nat Commun, 2018, 9(1): 2437.
[25] YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J]. Nature Commun, 2017,8: 14101.
[26] XIAO B, WANG K, XU G L, et al. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na [J]. Adv Mater, 2019, 31(29): e1805889.
[27] GONG Y, CHEN Y, ZHANG Q, et al. Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery [J]. Nat Commun, 2018, 9(1): 3341.
[28] LIU H, HARRIS K J, JIANG M, et al. Unraveling the rapid performance decay of layered high-energy cathodes: From nanoscale degradation to drastic bulk evolution [J]. ACS nano, 2018, 12(3): 2708-2718.
[29] ZHANG H, OMENYA F, WHITTINGHAM M S, et al. Formation of an anti-core–shell structure in layered oxide cathodes for Li-ion batteries [J]. ACS Energy Letters, 2017, 2(11): 2598-2606.
[30] 黄云博, 张海涛, 陈立杭, 等. 功能化原子力显微镜技术及其在能源材料领域的应用[J]. 电子显微学报, 2020, 39(4):434-450.
[31] GENT W E, LI Y, AHN S, et al. Persistent state‐of‐charge heterogeneity in relaxed, partially charged Li1−xNi1/3Co1/3Mn1/3O2 secondary particles [J]. Adv Mater, 2016, 28(31): 6631-6638.
[32] XU Z, JIANG Z, KUAI C, et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials [J]. Nat Commun, 2020, 11(1): 83.
[33] WANG J, KAREN CHEN-WIEGART Y C, ENG C, et al. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles [J]. Nat Commun, 2016, 7: 12372.
[34] CHUEH W C, EL GABALY F, SUGAR J D, et al. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping [J]. Nano Lett, 2013, 13(3): 866-872.
[35] GU L, ZHU C B, LI H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution [J]. J Am Chem Soc, 2011, 133(13): 4661-4663.
[36] ZHU Y, WANG J W, LIU Y, et al. In situ atomic‐scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation [J]. Adv Mater, 2013, 25(38): 5461-5466.
[37] 付军洁, 刘丹敏. 新型电池正极材料失效机制的透射电子显微学研究[J]. 电子显微学报, 2021, 40(2):188-196.