[1] HAIDER M, UHLEMANN S, SCHWAN E, et al. Electron microscopy image enhanced [J]. Nature, 1998, 392 (6678): 768-769.
[2] HAIDER M, ROSE H, UHLEMANN S, et al. A spherical-aberration-corrected 200 kV transmission electron microscope [J]. Ultramicroscopy, 1998, 75 (1): 53-60.
[3] UHLEMANN S, HAIDER M. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope [J]. Ultramicroscopy, 1998, 72 (3): 109-119.
[4] MORISHITA S, ISHIKAWA R, KOHNO Y, et al. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector [J]. Microscopy, 2018, 67 (1): 46-50.
[5] CHANG L Y, KIRKLAND A I, TITCHMARSH J M. On the importance of fifth-order spherical aberration for a fully corrected electron microscope [J]. Ultramicroscopy, 2006, 106 (4): 301-306.
[6] KIRKLAND E J. Improved high resolution image processing of bright field electron micrographs: I. Theory [J]. Ultramicroscopy, 1984, 15 (3): 151-172.
[7] COENE W M J, THUST A, OP DE BEECK M, et al. Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy [J]. Ultramicroscopy, 1996, 64 (1): 109-135.
[8] OP DE BEECK M, VAN DYCK D. Direct structure reconstruction in HRTEM [J]. Ultramicroscopy, 1996, 64 (1): 153-165.
[9] OP DE BEECK M, VAN DYCK D, COENE W. Wave function reconstruction in HRTEM: The parabola method [J]. Ultramicroscopy, 1996, 64 (1): 167-183.
[10] ZANDBERGEN H W, VAN DYCK D. Exit wave reconstructions using through focus series of HREM images [J]. Microscopy Research and Technique, 2000, 49 (3): 301-323.
[11] KIRKLAND A I, MEYER R R. “Indirect” high-resolution transmission electron microscopy: Aberration Measurement and wavefunction reconstruction [J]. Microscopy and Microanalysis, 2004, 10 (4): 401-413.
[12] ALLEN L J, MCBRIDE W, O'LEARY N L, et al. Exit wave reconstruction at atomic resolution [J]. Ultramicroscopy, 2004, 100 (1): 91-104.
[13] ZHANG D, ZHU Y, LIU L, et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials [J]. Science, 2018, 359 (6376): 675-679.
[14] YAO Y, ZHU Y, ZHU C. Geometric phase correction: A direct phase correction method to register low contrast noisy TEM images [J]. Micron, 2023, 172: 103503.
[15] BARTON B, JIANG B, SONG C, et al. Atomic resolution phase contrast imaging and in-line holography using variable voltage and dose rate [J]. Microscopy and Microanalysis, 2012, 18 (5): 982-994.
[16] HUANG C, BORISENKO K B, KIRKLAND A I. Exit wave reconstruction of radiation-sensitive materials from low-dose data [J]. Journal of Physics Conference Series, 2014, 522 (1): 012052.
[17] YU Y, ZHANG D, KISIELOWSKI C, et al. Atomic resolution imaging of halide perovskites [J]. Nano Letters, 2016, 16 (12): 7530-7535.
[18] YUAN B, YU Y. High-resolution transmission electron microscopy of beam-sensitive halide perovskites [J]. Chem, 2022, 8 (2): 327-339.
[19] BIRAN I, HOUBEN L, WEISSMAN H, et al. Real-space crystal structure analysis by low-dose focal-series TEM imaging of organic materials with near-atomic resolution [J]. Advanced Materials, 2022, 34 (26): e2202088.
[20] HANSSEN K, TREPTE L. The influence of voltage and current fluctuations and of a finite energy width of electrons on contrast and resolution in electron microscopy [J]. Optik, 1971,32 (6): 519-538.
[21] FRANK J. The envelope of electron microscopic transfer functions for partially coherent illumination [J]. Optik, 1973, 38: 519-536.
[22] ISHIZUKA K. Contrast transfer of crystal images in TEM [J]. Ultramicroscopy, 1980, 5 (1): 55-65.
[23] CHANG L-Y, KIRKLAND A I. Comparisons of linear and nonlinear image restoration [J]. Microscopy and Microanalysis, 2006, 12 (6): 469-475.
[24] GERCHBERG R W, SAXTON W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35 (2): 237-246.
[25] FIENUP J R. Phase retrieval algorithms: A comparison [J]. Applied Optics, 1982, 21 (15): 2758-2769.
[26] ISHIZUKA K. Validity of IWFR to Reconstruct an Exit Surface Wave [J]. Microscopy and Microanalysis, 2006, 12 (S02): 1460-1461.
[27] ISHIZUKA K. Phase retrieval from image intensities: Why does exit wave restoration using IWFR work so well? [J]. Microscopy, 2013, 62 (suppl_1): S109-S118.
[28] ALLEN L J, MCBRIDE W, O'LEARY N L, et al. Investigation of the effects of partial coherence on exit wave reconstruction [J]. Journal of Microscopy, 2004, 216: 70-75.
[29] TIEMEIJER P C, BISCHOFF M, FREITAG B, et al. Using a monochromator to improve the resolution in TEM to below 0.5Å. Part I: Creating highly coherent monochromated illumination [J]. Ultramicroscopy, 2012, 114: 72-81.
[30] TIEMEIJER P C, BISCHOFF M, FREITAG B, et al. Using a monochromator to improve the resolution in TEM to below 0.5Å. Part II: Application to focal series reconstruction [J]. Ultramicroscopy, 2012, 118: 35-43.
[31] LIN F, CHEN F R, CHEN Q, et al. The wrap-around problem and optimal padding in the exit wave reconstruction using HRTEM images [J]. Microscopy, 2006, 55 (4): 191-200.
[32] OPHUS C, EWALDS T. Guidelines for quantitative reconstruction of complex exit waves in HRTEM [J]. Ultramicroscopy, 2012, 113: 88-95.
[33] MEYER R R, KIRKLAND A I, SAXTON W O. A new method for the determination of the wave aberration function for high-resolution TEM: 1. Measurement of the symmetric aberrations [J]. Ultramicroscopy, 2002, 92 (2): 89-109.
[34] MEYER R R, KIRKLAND A I, SAXTON W O. A new method for the determination of the wave aberration function for high-resolution TEM: 2. Measurement of the antisymmetric aberrations [J]. Ultramicroscopy, 2004, 99 (2): 115-123.
[35] LIN F, LIU Y, ZHONG X, et al. An improved image alignment procedure for high-resolution transmission electron microscopy [J]. Micron, 2010, 41 (4): 367-372.
[36] MING W Q, CHEN J H, HE Y T, et al. An improved iterative wave function reconstruction algorithm in high-resolution transmission electron microscopy [J]. Ultramicroscopy, 2018, 195: 111-120.
[37] KRIVANEK O L. A method for determining the coefficient of spherical aberration from a single electron micrograph [J]. Optik, 1976, 45: 97-101.
[38] SAXTON W O. Observation of lens aberrations for very high-resolution electron-microscopy.1. Theory [J]. Journal of Microscopy, 1995, 179: 201-213.
[39] THUST A, OVERWIJK M H F, COENE W M J, et al. Numerical correction of lens aberrations in phase-retrieval HRTEM [J]. Ultramicroscopy, 1996, 64 (1/2/3/4): 249-264.
[40] BARTHEL J, THUST A. Aberration measurement in HRTEM: Implementation and diagnostic use of numerical procedures for the highly precise recognition of diffractogram patterns [J]. Ultramicroscopy, 2010, 111 (1): 27-46.
[41] ERNI R, ROSSELL M D, NAKASHIMA P N H. Optimization of exit-plane waves restored from HRTEM through-focal series [J]. Ultramicroscopy, 2010, 110 (2): 151-161.
[42] CHEN Z, MING W, HE Y, et al. Direct estimation and correction of residual aberrations in the reconstructed exit-wavefunction of a crystalline specimen [J].Micron, 2022, 157: 103247.
[43] OPHUS C, RASOOL H I, LINCK M, et al. Automatic software correction of residual aberrations in reconstructed HRTEM exit waves of crystalline samples [J]. Advanced Structural and Chemical Imaging, 2016, 2 (1): 15.
[44] WILLIAMS R C, FISHER H W. Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure [J]. Journal of Molecular Biology, 1970, 52 (1): 121-123.
[45] FUJIYOSHI Y, KOBAYASHI T, ISHIZUKA K, et al. A new method for optimal-resolution electron microscopy of radiation-sensitive specimens [J]. Ultramicroscopy, 1980, 5 (1): 459-468.
[46] KISIELOWSKI C. On the pressing need to address beam–sample interactions in atomic resolution electron microscopy [J]. Journal of Materials Science, 2016, 51 (2): 635-639.
[47] KISIELOWSKI C. Observing atoms at work by controlling beam-sample interactions [J]. Advanced Materials, 2015, 27 (38): 5838-5844.