In/Nb共掺杂TiO2薄膜结构特性的电子显微学研究
路 璐,李博宸,成绍鸫,米少波*
(1.季华实验室,广东佛山528200;2. 材料科学与工程学院,西安交通大学,陕西西安710049)
摘 要 本文研究了In/Nb共掺杂TiO2(TINO)薄膜在LaAlO3(001)和m面a-Al2O3衬底上的生长行为和显微结构特征。研究发现TINO薄膜在LaAlO3衬底上呈现锐钛矿结构(A-TINO),在m面a-Al2O3衬底上呈现金红石结构(R-TINO)。薄膜与衬底的晶体学取向关系分别为:(001)[100]A-TINO//(001)[100]LaAlO3和(001)[100]R-TINO//(1 00)[0001]a-Al2O3。通过原子分辨率扫描透射高角环形暗场像技术确定了A-TINO/LaAlO3和R-TINO/a-Al2O3异质界面以及薄膜中孪晶和晶界的精细结构。本工作有助于理解TiO2基薄膜的外延生长行为以及掺杂元素在材料中的偏聚特征。
关键词 二氧化钛;薄膜材料;掺杂;缺陷;界面结构
中图分类号:O484.1;O766+.1;O77+1 文献标识码:A doi:10.3969/j.issn.1000-6281.2023.06.007
Microstructural characterization of (In/Nb) Co-doped TiO2 thin films by advanced electron microscopy
LU Lu1, LI Bo-Chen2, CHENG Shao-Dong2, MI Shao-Bo1*
(1. Ji Hua Laboratory, Foshan Guangdong 528200; 2. School of Materials Science and Engineering, Xi'an Jiaotong University, Xi’an Shaanxi 710049,China)
Abstract The growth and microstructures of In/Nb co-doped TiO2(TINO) thin films prepared on LaAlO3(001) and m-plane a-Al2O3 were investigated by advanced transmission electron microscopy (TEM). TINO thin films have an anatase structure (A-TINO) on LaAlO3 and a rutile structure (R-TINO) on m-plane a-Al2O3. The film-substrate orientation relation was determined to be (001)[100]A-TINO//(001)[100]LaAlO3 and (001)[100]R-TINO//(1 00)[0001] a-Al2O3. By high-angle annular dark-field imaging of scanning TEM, the structural details of A-TINO/LaAlO3 and R-TINO/a-Al2O3 heterointerface, twins, and grain boundaries were characterized at the atomic scale. Our findings provide a better understanding of the growth behavior of TiO2-based thin films on various substrates and cation segregation in the doped TiO2 materials.
Keywords TiO2; thin film; doping; defects; interface structure
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96.
[2] ZHU T, GAO S P. The stability, electronic structure, and optical property of TiO2 polymorphs[J]. Journal of Physical Chemistry C, 2013, 118: 11385-11396.
[3] SONG M, LU Z X, LI D S. Phase transformations among TiO2 polymorphs[J]. Nanoscale, 2020, 12(45): 23183-23190.
[4] CHOI M, LIM J, BAEK M, et al. Investigating the unrevealed photocatalytic activity and stability of nanostructured brookite TiO2 film as an environmental photocatalyst[J]. ACS Applied Materials & Interfaces, 2017, 9(19): 16252-16260.
[5] 李祥,姚婷婷,江亦潇,等. TiO2薄膜的相结构调控与表征[J]. 电子显微学报,2022, 41(2): 111-116.
[6] DEVI L G, MURTHY B N, KUMAR S G. Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light[J]. Journal of Molecular Catalysis A-chemical, 2009, 308: 174-181.
[7] JANG D M, KWAK I H, KWON E L, et al. Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution[J]. Journal of Physical Chemistry C, 2015, 119: 1921-1927.
[8] HU W B, LIU Y, WITHERS R L, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials[J]. Nature Materials, 2013, 12(9): 821−826.
[9] YU Y, ZHAO Y, QIAO Y, et al. Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity[J]. Journal of Materials Science & Technology, 2021, 84: 10-15.
[10] ZHENG S J, FISHER C A J, KATO T, et al. Domain formation in anatase TiO2 thin films on LaAlO3 substrates[J]. Applied Physics Letters, 2012, 101(19): 191602.
[11] 李想,姚婷婷,江亦潇,等. 两种衬底上Cr2O3薄膜的制备与显微结构表征[J]. 电子显微学报,2022, 41(4): 393-398.
[12] LI B C, CHENG S D, CHENG S, et al. Growth behavior and interface of (In+Nb) co-doped rutile TiO2 films prepared on m-plane sapphire substrates[J]. Thin Solid Films, 2021, 732: 138762.
[13] WU S Q, CHENG S, LU L, et al. B-site ordering and strain-induced phase transition in double-perovskite La2NiMnO6 films[J]. Scientific Reports, 2018, 8: 2516.
[14] CHENG Z, HANKE M, VOGT P, et al. Phase formation and strain relaxation of Ga2O3 on c-plane and a-plane sapphire substrates as studied by synchrotron-based X-ray diffraction[J]. Applied Physics Letters, 2017, 111(16): 162104.
[15] QUIRK J A, LAZAROV V K, MCKENNA K P. Electronic properties of {112} and {110} twin boundaries in anatase TiO2[J]. Advanced Theory and Simulations, 2019, 2(12): 1900157.
[16] PENN R L, BANFIELD J F. Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania[J]. American Mineralogist, 1999, 84(5/6): 871-876.
[17] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(SEP1): 751-767.
[18] LU L, ZHANG C L, MI S B. Probing interface structure and cation segregation in (In, Nb) co-doped TiO2 thin films[J]. Materials Characterization, 2022, 191: 112164.
[19] LU W, BRUNER B, CASILLAS G, et al. Direct oxygen imaging in titania nanocrystals[J]. Nanotechnology, 2012, 23(33): 335706.
[20] APGAR B A, MARTIN L W. Understanding the competition between epitaxial strain and thermodynamics in TiO2: Structural, morphological, and property evolution[J]. Crystal Growth & Design, 2014, 14(4): 1981-1988.
[21] ZHU M, CHIKYOW T, AHMET P, et al. A high-resolution transmission electron microscopy investigation of the microstructure of TiO2 anatase film deposited on LaAlO3 and SrTiO3 substrates by laser ablation[J]. Thin Solid Films, 2003, 441(1/2): 140−144.
[22] HUANG J Y, PARK B H, JAN D, et al. High-resolution transmission electron microscopy study of defects and interfaces in epitaxial TiO2 films on sapphire and LaAlO3[J]. Philosophical Magazine A, 2002, 82(4): 735-749.
[23] BAYATI M R, MOLAEI R, BUDAI J D, et al. Role of substrate crystallographic characteristics on structure and properties of rutile TiO2 epilayers[J]. Journal of Applied Physics, 2013, 114: 044314.
[24] BAYATI M R, JOSHI S H, MOLAEI R, et al. Structure–property correlation in epitaxial (200) rutile films on sapphire substrates[J]. Journal of Solid State Chemistry, 2012, 187: 231-237.
[25] SILVA V F, BOUQUET V, DÉPUTIER S, et al. Substrate-controlled allotropic phases and growth orientation of TiO2 epitaxial thin films[J]. Journal of Applied Crystallography, 2010, 43: 1502-1512.
[26] SETVIN M, FRANCHINI C, HAO X F, et al. Direct view at excess electrons in TiO2 rutile and anatase[J]. Physical Review Letters, 2014, 113(8): 086402.
[27] FRANCHINI C, RETICCIOLI M, SETVIN M, et al. Polarons in materials[J]. Nature Reviews Materials, 2021, 6(7): 560-586.