[1] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry [J]. Materials Science & Engineering A, 2000, 280: 37-49.
[2] MARIOARA C D, ANDERSEN S J, JANSEN J, et al. The influence of temperature and storage time at RT on nucleation of the β" phase in a 6082 Al-Mg-Si alloy [J]. Acta Materialia, 2003, 51(3): 789-796.
[3] ZHANG H, LI L X, YUAN D, et al. Hot deformation behavior of the new Al-Mg-Si-Cu aluminum alloy during compression at elevated temperatures [J]. Materials Characterization, 2007, 58: 168-173.
[4] MURAYAMA M, HONO K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys [J]. Acta Materialia, 1999, 47: 1537-1548.
[5] ZANDBERGEN H W, ANDERSEN S J, JANSEN J. Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies [J]. Science, 1997, 277: 1221-1225.
[6] CHEN J H, COSTAN E, HUIS M A V, et al. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J]. Science, 2006, 312: 416-419.
[7] ANDERSEN S J, ZANDBERGEN H W, JANSEN J, et al. The crystal structure of the β" phase in Al-Mg-Si alloys [J]. Acta Materialia, 1998, 46: 3283-3293.
[8] EDWARDS G A, STILLER K, DUNLOP G L, et al. The precipitation sequence in Al-Mg-Si alloys [J]. Acta Materialia, 1998, 46: 3893-3904.
[9] RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates [J]. Acta Materialia, 2004, 52: 4213-4227.
[10] HE H, ZHANG L, LI S K, et al. Precipitation stages and reaction kinetics of AlMgSi alloys during the artificial aging process monitored by in-situ electrical resistivity measurement method [J]. Metals, 2018, 8: 39.
[11] MARIOARA C D, ANDERSEN S J, STENE T N, et al. The effect of Cu on precipitation in Al-Mg-Si alloys [J]. Philosophical Magazine, 2007, 87: 3385-3413.
[12] DING L P, JIA Z H, NIE J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy [J]. Acta Materialia, 2018, 145: 437-450.
[13] POGATSCHER S, ANTREKOWITSCH H, LEITNER H, et al. Mechanisms controlling the artificial aging of Al-Mg-Si alloys [J]. Acta Materialia, 2011, 59: 3352-3363.
[14] YAMADA K, SATO T, KAMIO A. Effects of quenching conditions on two-step aging behavior of Al-Mg-Si alloys [J]. Material Science Forum, 2000, 331-337: 669-674.
[15] CHANG C S, WIELER I, WANDERKA N, et al. Positive effect of natural pre-ageing on precipitation hardening in Al-0.44at.% Mg-0.38at.% Si alloy [J]. Ultramicroscopy, 2009, 109: 585-592.
[16] LAI Y X, JIANG B C, LIU C H, et al. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg-Si alloys [J]. Journal of Alloys & Compounds, 2017, 701: 94-98.
[17] LIU C H, LAI Y X, CHEN J H, et al. Natural-aging-induced reversal of the precipitation pathways in an Al-Mg-Si alloy [J]. Scripta Materialia, 2016, 115: 150-154.
[18] TAO G H, LIU C H, CHEN J H, et al. The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys [J]. Materials Science & Engineering A, 2015, 642: 241-248.
[19] WENG Y Y, JIA Z H, DING L P, et al. Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys [J]. Journal of Alloys & Compounds, 2017, 695: 2444-2452.
[20] WERINOS M, ANTREKOWITSCH H, EBNER T, et al. Design strategy for controlled natural aging in Al-Mg-Si alloys [J]. Acta Materialia, 2016, 118: 296-305.
[21] XIANG X M, LAI Y X, LIU C H, et al. Sn-induced modification of the precipitation pathways upon high-temperature ageing in an Al-Mg-Si alloy [J]. Acta Metallurgica Sinica, 2018, 54: 1273-1280.
[22] MASUDA T, TAKAKI Y, SAKURAI T, et al. Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al-0.6 mass% Mg-1.0 mass% Si alloy [J]. Materials Transactions, 2010, 51: 325-332.
[23] DING X P, CUI H, ZHANG J X, et al. The effect of Zn on the age hardening response in an Al-Mg-Si alloy [J]. Material & Design, 2015, 65: 1229-1235.
[24] GUO M X, ZHANG X K, ZHANG J S, et al. Effect of Zn addition on the precipitation behaviors of Al-Mg-Si-Cu alloys for automotive applications [J]. Materials Science & Technology, 2016, 52: 1390-1404.
[25] GUO M X, ZHANG Y, ZHANG X K, et al. Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents [J]. Materials Science & Engineering A, 2016, 669: 20-32.
[26] GUO M X, ZHANG Y D, LI G J, et al. Solute clustering in Al-Mg-Si-Cu-(Zn) alloys during aging [J]. Journal of Alloys & Compounds, 2019, 774: 347-363.
[27] SAITO T, WENNER S, OSMUNDSEN E, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philosophical Magazine, 2014, 94: 2410-2425.
[28] SAITO T, EHLERS F J H, LEFEBVRE W, et al. HAADF-STEM and DFT investigations of the Zn-containing β" phase in Al-Mg-Si alloys [J]. Acta Materialia, 2014, 78: 245-253.
[29] GUPTA A K, LLOYD D J, COURT S A. Precipitation hardening in Al-Mg-Si alloys with and without excess Si [J]. Materials Science & Engineering A, 2001, 316: 11-17.
[30] GUPTA A K, LLOYD D J. Study of precipitation kinetics in a super purity Al-0.8 pct Mg-0.9 pct Si alloy using differential scanning calorimetry [J]. Metallurgical & Materials Transactions A, 1999, 30: 879-884.
[31] LI Y, GAO G J, WANG Z D, et al. Effects of the Mg/Si ratio on microstructure, mechanical properties, and precipitation behavior of Al-Mg-Si-1.0 wt.% Zn alloys [J]. Materials, 2018, 11: 2591.
[32] RAEISINIA B, POOLE W J, LLOYD D J. Examination of precipitation in the aluminum alloy AA6111 using electrical resistivity measurements [J]. Materials Science & Engineering A, 2006, 420: 245-249.
[33] CUI L X, LIU Z X, ZHAO X G, et al. Precipitation of metastable phases and its effect on electrical resistivity of Al-0.96Mg2Si alloy during aging [J]. Transactions of Nonferrous Metals Society of China, 2014, 24: 2266-2274.
[34] JIANG F L, ZUROB H S, PURDY G R, et al. Characterizing precipitate evolution of an Al-Zn-Mg-Cu-based commercial alloy during artificial aging and non-isothermal heat treatments by in situ electrical resistivity monitoring [J]. Material Characterization, 2016, 117: 47-56.
[35] SHA G, MÖLLER H, STUMPF W E, et al. Solute nanostructures and their strengthening effects in Al-7Si-0.6Mg alloy F357 [J]. Acta Materialia, 2012, 60: 692-701.