[1] FANG L, WANG S, SONG C, et al. Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts [J]. Journal of Hazardous Materials, 2022, 421: 126628.
[2] REYTER D, BELANGER D, ROUE L. Study of the electroreduction of nitrate on copper in alkaline solution [J]. Electrochimica Acta, 2008, 53(20): 5977-5984.
[3] XU Y, WANG M, REN K, et al. Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation [J]. Journal of Materials Chemistry A, 2021, 9(30): 16411-16417.
[4] TENG M, YE J, WAN C, et al. Research progress on Cu-based catalysts for electrochemical nitrate reduction reaction to ammonia [J]. Industrial & Engineering Chemistry Research, 2022, 61(40): 14731-14746.
[5] WANG Z, RICHARDS D, SINGH, N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction [J]. Catalysis Science & Technology, 2021, 11(3): 705-725.
[6] XU Y, SHI K, REN, T, et al. Electronic metal-support interaction triggering interfacial charge polarization over CuPd/N-doped-C nanohybrids drives selectively electrocatalytic conversion of nitrate to ammonia [J]. Small, 2022, 18(42): e2203335.
[7] XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle [J].Chemical Society Reviews, 2022, 51(7): 2710-2758.
[8] DIMA G E, DE VOOYS A C A, KOPER M T M. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions [J].Journal of Electroanalytical Chemistry, 2003, 554: 15-23.
[9] GEORGEAUD V, DIAMAND A, BORRU D, et al. Electrochemical treatment of wastewater polluted by nitrate: selective reduction to N2 on boron-doped diamond cathode [J].Water Science and Technology, 2011, 63(2): 206-212.
[10] GAYEN P, SPATARO J, AVASARALA S, et al. Electrocatalytic reduction of nitrate using magneli phase TiO2 reactive electrochemical membranes doped with Pd-based catalysts [J].Environmental Science & Technology, 2018, 52(16): 9370-9379.
[11] HE W, ZHANG J, DIECKHOFER, S, et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia [J].Nature Communication,2022, 13(1): 1129.
[12] GARCIA-SEGURA S, LANZARINI-LOPES M, HRISTOVSKI K, et al. Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications [J].Applied Catalysis B: Environmental, 2018, 236: 546-568.
[13] YANG X, WANG R, WANG S, et al. Sequential active-site switches in integrated Cu/Fe-TiO2 for efficient electroreduction from nitrate into ammonia [J].Applied Catalysis B: Environmental, 2023: 122360.
[14] CHEN G F, YUAN Y, JIANG H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst [J]. Nature Energy, 2020, 5(8): 605-613.
[15] PEREZ-GALLENT E, FIGUEIREDO M C, KATSOUNAROS I, et al. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions [J]. Electrochimica Acta, 2017, 227: 77-84.
[16] FU X, ZHAO X, HU X, et al.Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets [J]. Applied Materials Today, 2020, 19: 100620.
[17] HU Q, QIN Y, WANG X, et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion [J]. Energy & Environmental Science, 2021, 14(9): 4989-4997.
[18] WANG Y, XU A, WANG Z, et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption [J].Journal of the American Chemical Society, 2020, 142(12): 5702-5708.
[19] KATSOUNAROS I, IPSAKIS D, POLATIDES C, et al. Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials [J]. Electrochimica Acta, 2006, 52(3): 1329-1338.
[20] KATSOUNAROS I, DORTSIOU M, POLATIDES C, et al. Reaction pathways in the electrochemical reduction of nitrate on tin [J]. Electrochimica Acta, 2012, 71: 270-276.
[21]EL DIN A M S, ABD EL WAHAB F M. The behaviour of copper-tin alloys in alkaline solutions upon alternate anodic and cathodic polarization [J]. Electrochimica Acta, 1965, 10(11): 1127-1140.
[22] MACOVA Z, BOUZEK K. Electrocatalytic activity of copper alloys for NO3- reduction in a weakly alkaline solution Part 1: Copper–zinc [J]. Journal of Applied Electrochemistry, 2005, 35(12):1203-1211.
[23] WANG J, TENG W, LING L, et al. Nanodenitrification with bimetallic nanoparticles confined in N-doped mesoporous carbon [J]. Environmental Science: Nano, 2020, 7(5): 1496-1506.
[24] FAN J, XU H, LV M, et al. Mesoporous carbon confined palladium–copper alloy composites for high performance nitrogen selective nitrate reduction electrocatalysis [J]. New Journal of Chemistry, 2017, 41(6):2349-2357.
[25] SHIH Y J, WU Z L, LIN C Y, et al. Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity [J]. Applied Catalysis B: Environmental, 2020, 273: 119014.
[26] XU Y, REN K, REN T, et al. Ultralow-content Pdin-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia [J].Applied Catalysis B: Environmental,2022, 306: 121029.
[27] JUNG W, JEONG J, CHAE Y, et al. Synergistic bimetallic CuPd oxide alloy electrocatalyst for ammonia production from the electrochemical nitrate reaction [J]. Journal of Materials Chemistry A, 2022, 10(44):23760-23769.
[28] 刘美梅, 沈闽, 李小燕. 多枝状PdCu 纳米合金的结构表征及其电催化性能研究[J]. 电子显微学报, 2016, 35(3): 201-206.
[29] 张月颖, 罗颖, 刘翠秀, 等. Al-Ni-Ru合金中非平衡凝固组织结构及物相形成特征[J]. 电子显微学报, 2023, 42(2): 153-160.
[30] 郭思齐, 张佳琳, 程宁燕, 等. 双金属合金纳米颗粒的原位透射电镜研究[J]. 电子显微学报, 2022, 41(4): 459-4714.
[31] 钟毓, 黄敏, 于迎辉. 铜氧化层及其上制备锑纳米结构的STM研究[J]. 电子显微学报, 2021, 40(4): 384-391.
[32] LIU S, QI W, LIU J, et al.Modulating electronic structure to improve the solar to hydrogen efficiency of cobalt nitride with lattice doping [J]. ACS Catalysis, 2023, 13(4):2214-2222.
[33] WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia [J].Angewandte Chemie International Edition, 2020, 59(13): 5350-5354.
[34] YANG P, BAO Y S.Palladium nanoparticles supported on organofunctionalized kaolin as an efficient heterogeneous catalyst for directed C-H functionalization of arylpyrazoles [J]. Rsc Advances, 2017, 7(85): 53878-53886.
[35] XU H, WU J, LUO W, et al.Dendritic cell-inspired designed architectures toward highly efficient electrocatalysts for nitrate reduction reaction [J]. Small, 2020, 16(30): e2001775.
[36] JIA R, WANG Y, WANG C, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catalysis, 2020, 10(6):3533-3540.
[37] WANG X, WAN X, QIN X, et al. Electronic structure modulation of RuO2 by TiO2 enriched with oxygen vacancies to boost acidic O2 evolution[J].ACS Catalysis, 2022, 12(15):9437-9445.