仿生层状骨架结构的可控构筑及其显微结构表征
孙晓毅#,邓清井#,张宇贝,李逢时,岳永海*
(1.北京航空航天大学化学学院,北京市 100191;2. 北京航空航天大学前沿科学技术创新研究院,北京市 100191)
摘 要 发展兼具轻质、高强、高韧的高性能新材料始终是工程材料领域长期追求的目标之一。然而,高强和高韧、高强和轻质之间通常是相悖的。自然界中很多天然材料巧妙地解决了这一问题,受此启发,采用冰模板法实现了一系列仿生层状骨架结构的可控制备,并利用扫描电子显微镜对其显微结构进行了系统的结构表征,这些骨架结构有望成为新的结构增强基元,实现复合材料力学性能的提升。实验结果表明:与单向冰模板法相比,双向冰模板法制备的层状结构具有更高的有序度;通过精准调控浆料中氧化铝的含量,实现了层间次级结构从凸起、半连接到完全桥连的可控制备;同时,氧化铝层厚度可实现由8 μm到20 μm,层间距由65 μm到50 μm的连续可控调节;值得注意的是,双向冰模板法制备层状骨架的实验方法具有普适性,成功实现了多种层状陶瓷基、金属基骨架结构的可控制备。
关键词 仿生层状骨架结构;冰模板法;微结构调控;结构表征
中图分类号:TB332;TB321;TQ174.6;TG115.21+5.3 文献标识码:A doi:10.3969/j.issn.1000-6281.2023.06.004
Preparation and microstructural characterization of bioinspired ceramic matrix composites
SUN Xiao-yi1#,DENG Qing-jing#,ZHANG Yu-bei,LI Feng-shi1,2,YUE Yong-hai1*
(1. School of Chemistry, Beihang University, Beijing 100191;2. Research Institute for Frontier Science, Beihang University, Beijing 100191, China)
Abstract High-performance materials with lightweight, high strength and high toughness are one kind of the targets in engineering materials. Strength and toughness are usually at odds with each other. Biomaterials with micro-nano structures can naturally balance the two sides. Inspired by this, the controlled preparation of an alumina laminar skeleton was achieved by freeze-casting method and its microstructure was characterized by scanning electron microscopy. These skeletal structures are expected to serve as new structurally reinforcing matrix elements to achieve improved mechanical properties. Experimental results show that the lamellar structure prepared by bi-directional freeze-casting is more ordered than that of unidirectional freeze-casting. As the alumina particle content in the paste increases, the viscosity of the paste increases and the alumina content gradually increases from 18 wt. % to 36 wt. %. The thickness of the ceramic layer increases from 8 μm to 20 μm and the interlayer distance decreases from 65 μm to 50 μm. It is noteworthy that the experimental method for the preparation of laminated skeletons by bidirectional freeze-casting method is universal. It has successfully achieved the controlled preparation of a wide range of laminated ceramic-based and metal-based skeletal structures.
Keywords biomimetic laminar skeleton structure; ice-template method; microstructure control; structural characterization
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] HE W X, RAJASEKHARAN A K, TEHRANI‐BAGHA A R, et al. Mesoscopically ordered bone‐mimetic nanocomposites[J]. Adv Mater, 2015, 27(13): 2260-2264.
[2] YEOM B, SAINT, LACEVIC N, et al. Abiotic tooth enamel[J]. Nature, 2017, 543(7643): 95-98.
[3]TRAN P, NGO T D, GHAZLAN A, et al. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings[J]. Compos Part B Eng, 2017, 108:210-223.
[4] WEAVER J C, Milliron G W,MISEREZ A,et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science, 2012,336(6086): 1275-1280.
[5] SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. J Mech Behav Biomed Mater, 2017, 76:38-57.
[6] JIAO D, LIU Z Q,QU R T. et al. Anisotropic mechanical behaviors and their structural dependences of crossed-lamellar structure in a bivalve shell[J]. Mater Sci Eng C, 2016, 59:828-837.
[7] BARTHELAT F. Growing a synthetic mollusk shell [J]. Science, 2016, 354(6308): 32-33.
[8]欧阳志远, 杨磊, 唐何娜, 等. 氨基酸诱导合成类珍珠层物质的初步研究[J]. 电子显微学报, 2019, 38(1): 34-42.
[9] DAS P, SCHIPMANN S, MALHO J M, et al. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities[J].Acs Appl Mater Inter, 2013, 5(9):3738-3747.
[10] TANG Z Y, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J].Nat Mater, 2003, 2(6): 413-418.
[11] BONDERER L J, STUDART A R, GAUCKLER L J. Bioinspired design and assembly of platelet reinforced polymer films[J]. Science, 2008, 319(5866): 1069-1073.
[12] WALTHER A, BJURHAGER I, MALHO J M, et al.Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J]. Nano Lett, 2010, 10(8): 2742-2748.
[13] LIU Y , SIRON M , LU D , et al. Self-assembly of two-dimensional perovskite nanosheet building blocks into ordered ruddlesden-popper perovskite phase[J]. J Am Chem Soc, 2019, 141(33): 13028-13032.
[14] HUO W , ZHANG X , TERVOORT E , et al. Ultrastrong hierarchical porous materials via colloidal assembly and oxidation of metal particles[J]. Adv Funct Mater, 2020, 30(38): 2003550.
[15] FUKASAWA T, DENG Z Y, ANDO M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. J Mater Sci, 2001, 36(10): 2523-2527.
[16]DEVILLE S, SAIZ E, TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489.
[17] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science, 2008, 322(5907): 1516-1520.
[18] POT M W, FARAJ K A, ADAWY A, et al. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: Practical and theoretical considerations[J].Acs Appl Mater Inter, 2015, 7(16): 8495-8505.
[19] BAI H, CHEN Y, DELATTRE B, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Sci Adv, 2015, 1(11):e1500849.
[20] ALGHARAIBEH S, IRELAND A J, SU B. Bi-directional freeze casting of porous alumina ceramics: A study of the effects of different processing parameters on microstructure[J].J Eur Ceram Soc, 2019, 39(2/3): 514-521.