PtS2的表面相工程:单晶PtS2-非晶PtSx-单晶Pt
袁墩栋,何勇民,赵晓续,朱 超,孙立涛*
(1.东南大学—FEI纳皮米中心,MEMS教育部重点实验室,东南大学电子科学与工程学院,江苏 南京 210096;2. 湖南大学 化学化工学院,湖南 长沙 410082;3. 北京大学 材料科学与工程学院,北京 100871)
摘 要 本文利用原子级扫描透射电子显微术(STEM)研究了PtS2在连续Ar等离子体作用下其表面S原子不断缺失并导致相转变的过程。实验发现随着S原子占比的减小,层状1T相PtS2以逐层非晶化的方式转变为无定形非晶相PtSx(x<2),并且基于径向分布函数(RDF)分析定量提取了最邻近Pt-Pt、Pt-S、S-S原子对的分布概率。随着S原子占比的继续减小,表面非晶相PtSx最终转变为单晶Pt,结合电子能量损失谱(EELS)与STEM原子序数衬度图像分析表明,Pt原子以(111)面心立方密堆的方式堆垛,形成少层甚至单层Pt晶畴。
关键词 STEM;单层非晶PtSx;Pt单晶;相工程
中图分类号:TG115. 21+ 5. 3;O649.2;O647.11 文献识别码:A doi:10.3969/j.issn.1000-6281.2023.06.003
Surface phase engineering of PtS2: monocrystal PtS2 – amorphous PtSx– monocrystal Pt
YUAN Dun-dong1, HE Yong-min2, ZHAO Xiao-xu3, ZHU Chao1, SUN Li-tao1*
(1. SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing Jiangsu 210096, ;2. College of Chemistry and Chemical Engineering, Hunan University, Changsha Hunan 410082;3. School of Materials Science and Engineering, Peking University, Beijing 100871, China)
Abstract In this paper, the continuous loss of S atoms and the resulting phase transitions of PtS2 under the process of Ar plasma is investigated by atomic-scale scanning transmission electron microscopy (STEM). Layered 1T phase PtS2 transforms into amorphous phase PtSx (x < 2) in a layer-by-layer amorphization manner as the proportion of S atoms decreases. The distribution probability of the most proximal Pt-Pt, Pt-S, S-S atom pairs are quantitatively extracted via the radial distribution function (RDF) analysis. As the proportion of S atoms further decrease, the surface amorphous PtSx eventually transforms into Pt monocrystals. By combining electron energy loss spectroscopy (EELS) and STEM atomic number contrast image analysis, it is shown that Pt atoms are stacked in a (111) face-centered cubic close-packed manner to form few-layer or even monolayer Pt crystal domains.
Keywords STEM; monolayer amorphous PtSx; Pt monocrystal; phase engineering
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] LI C, BAEK J B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction [J]. ACS Omega, 2020, 5(1): 31-40.
[2] LIU M, ZHAO Z, DUAN X, et al. Nanoscale structure design for high-performance Pt-based ORR catalysts [J]. Adv Mater, 2019, 31(6): e1802234.
[3] ZHANG L, DOYLE-DAVIS K, SUN X. Pt-based electrocatalysts with high atom utilization efficiency: From nanostructures to single atoms [J]. Energy & Environmental Science, 2019, 12(2): 492-517.
[4] CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J]. Nat Commun, 2016, 7: 13638.
[5] JIANG K, LIU B, LUO M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction [J]. Nat Commun, 2019, 10(1): 1743.
[6] JIANG K, LUO M, LIU Z, et al. Rational strain engineering of single-atom ruthenium on nanoporous MoS(2) for highly efficient hydrogen evolution [J]. Nat Commun, 2021, 12(1): 1687.
[7] LI M, ZHAO Z, CHENG T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction [J]. Science, 2016, 354(6318): 1414-1419.
[8] YIN H, ZHAO S, ZHAO K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity [J]. Nat Commun, 2015, 6: 6430.
[9] FUNATSU A, TATEISHI H, HATAKEYAMA K, et al. Synthesis of monolayer platinum nanosheets [J]. Chem Commun (Camb), 2014, 50(62): 8503-8506.
[10] KIJIMA T, NAGATOMO Y, TAKEMOTO H, et al. Synthesis of nanohole-structured single-crystalline platinum nanosheets using surfactant-liquid-crystals and their electrochemical characterization [J]. Advanced Functional Materials, 2009, 19(4): 545-553.
[11] 郭谊忠, 李帅, 王占鑫, 等. 单晶Pt中位错与非共格孪晶界反应的原位原子尺度观察[J]. 电子显微学报, 2022, 41(4): 363-369.
[12] CHEN C, KANG Y, HUO Z, et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces [J]. Science, 2014, 343(6177): 1339-1343.
[13] KIM C, DIONIGI F, BEERMANN V, et al. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO(2) RR) [J]. Adv Mater, 2019, 31(31): e1805617.
[14] XU Y, ZHANG B. Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications [J]. Chem Soc Rev, 2014, 43(8): 2439-2450.
[15] HE Y, LIU L, ZHU C, et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production [J]. Nature Catalysis, 2022, 5(3): 212-221.
[16] CHEN Y, LAI Z, ZHANG X, et al. Phase engineering of nanomaterials [J]. Nat Rev Chem, 2020, 4(5): 243-256.
[17] 蒋仁辉, 李佩, 林泽圣, 等. 无序超结构Na_(5)W_(14)O_(44)的制备与原子尺度表征[J]. 电子显微学报, 2022, 41(4): 413-427.
[18] MITCHELL D R G, PETERSEN T C. RDFTools: A software tool for quantifying short-range ordering in amorphous materials [J]. Microscopy Research and Technique, 2012, 75(2): 153-163.
[19] COCKAYNE D J H. The study of nanovolumes of amorphous materials using electron scattering [J]. Annual Review of Materials Research, 2007, 37(1): 159-187.
[20] SAITO M, WAKESHIMA M, SATO N, et al. The structure of amorphous platinum disulfide as studied by anomalous X-ray scattering [J]. Zeitschrift für Naturforschung A, 1994, 49(11): 1031-1036.