[1] ÖZGÜR Ü, ALIVOV YA I, LIU C, et al. A comprehensive review of ZnO materials and devices[J]. Journal of Applied Physics, 2005,98(4): 041301.
[2] AYOUB I, KUMAR V, ABOLHASSANI R, et al. Advances in ZnO:Manipulation of defects for enhancing their technological potentials[J]. Nanotechnology Reviews, 2022, 11(1): 575-619.
[3] KATTEL S, RAMÍREZ P J, CHEN J G, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
[4] BUNN C W. The lattice-dimensions of zinc oxide[J]. Proceedings of the Physical Society, 1935, 47(5): 835.
[5] AHAMED M, AKHTAR M J, KHAN M M, et al. SnO2-doped ZnO/reduced graphene oxide nanocomposites: Synthesis, characterization, and improved anticancer activity via oxidative stress pathway[J]. International Journal of Nanomedicine, 2021, 16: 89-104.
[6] YANG W, ZHANG B, DING N, et al.Fast synthesize ZnO quantum dots via ultrasonic method[J]. Ultrasonics Sonochemistry, 2016, 30: 103-112.
[7] 박철민, 장원석, LEE J, et al. Relative influence of surface and interfacial defects in hydrothermally grown nanostructured ZnO [J]. Transactions of the KSME, B, 2014, 38(10): 831-835.
[8] LIU L, MEI Z, TANG A, et al. Oxygen vacancies: The origin of n-type conductivity in ZnO[J]. Physical Review B, 2016, 93(23): 235305.
[9] BEINIK I, HELLSTRÖM M, JENSEN T N, et al. Enhanced wetting of Cu on ZnO by migration of subsurface oxygen vacancies[J]. Nature Communications, 2015, 6(1): 8845.
[10] LIU M H, CHEN Y W, LIU X, et al. Defect-mediated gold substitution doping in ZnO mesocrystals and catalysis in CO oxidation[J]. ACS Catalysis, 2016, 6(1): 115-122.
[11] MEYER B, MARX D, DULUB O, et al. Partial dissociation of water leads to stable superstructures on the surface of zinc oxide[J]. Angewandte Chemie International Edition, 2004, 43(48): 6641-6645.
[12] MEUNIER F C. Mixing copper nanoparticles and ZnO nanocrystals: A route towards understanding the hydrogenation of CO2 to methanol? [J]. Angewandte Chemie International Edition, 2011, 50(18): 4053-4054.
[13] SHI G, CHEN Q, ZHANG Q, et al. Morphology effect of ZnO support on the performance of Cu toward methanol production from CO2 hydrogenation[J]. Journal of Saudi Chemical Society, 2020, 24(1): 42-51.
[14] TANG J, CHAI J, HUANG J, et al. ZnO Nanorods with low intrinsic defects and high optical performance grown by facile microwave-assisted solution method[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4737-4743.
[15] 夏怡泽, 欧阳, 王飞, 等. 环境扫描透射电子显微镜原位揭示氢溢流促进TiO2体缺陷修复机理[J]. 电子显微学报, 2022, 41(4): 370-380.
[16] CHOOPUN S, VISPUTE R D, NOCH W, et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire[J]. Applied Physics Letters, 1999, 75(25): 3947-3949.
[17] DAI S, YOU Y, ZHANG S, et al. In situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles[J]. Nature Communications, 2017, 8(1): 204.
[18] HE Y, LIU J C, LUO L, et al. Size-dependent dynamic structures of supported gold nanoparticles in CO oxidation reaction condition[J]. Proceedings of the National Academy of Sciences, 2018, 115(30): 7700-7705.
[19] HWANG S, CHEN X, ZHOU G, et al. In situ transmission electron microscopy on energy-related catalysis[J]. Advanced Energy Materials, 2020, 10(11): 1902105.
[20] SU D S, ZHANG B, SCHLÖGL R. Electron microscopy of solid catalysts—transforming from a challenge to a toolbox[J]. Chemical Reviews, 2015, 115(8): 2818-2882.
[21] WANG L, DU K, YANG C, et al. In situ atomic-scale observation of grain size and twin thickness effect limit in twin-structural nanocrystalline platinum[J]. Nature Communications, 2020, 11(1): 1167.
[22]LIU L, HUANG S, LU Y, et al. Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability[J]. Advanced Materials, 2018, 30(29): 1800544.
[23] WANG S C, LU M Y, MANEKKATHODI A, et al. Complete replacement of metal in metal oxide nanowires via atomic diffusion: In/ZnO case study[J]. Nano Letters, 2014, 14(6): 3241-3246.
[24] YUAN W, ZHU B, FANG K, et al. In situ manipulation of the active Au-TiO2 interface with atomic precision during CO oxidation[J]. Science, 2021, 371(6528): 517-521.
[25] YUAN W, ZHU B, LI X Y, et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy[J]. Science, 2020, 367(6476): 428-430.
[26] FREY H, BECK A, HUANG X, et al. Dynamic interplay between metal nanoparticles and oxide support under redox conditions[J]. Science, 2022, 376(6596): 982-987.
[27] ZHANG X, HAN S, ZHU B, et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation[J]. Nature Catalysis, 2020, 3(4): 411-417.
[28] 李雷, 贾双凤, 文广玉, 等. 金属氧化物缺陷结构与微观力学形变机制[J]. 电子显微学报, 2020, 39(6): 642-9.
[29] 杨清, 李俊宝, 杨丽, 等. 氧化锆热障陶瓷铁弹增韧行为的原位电镜研究[J]. 电子显微学报, 2022, 41(1): 8-14.
[30] 张辉, 徐涛, 孙立涛. 电子束辐照下银纳米孔修复的原位研究[J]. 电子显微学报, 2023, 42(2):123-128.
[31] KAKAZEY M G, VLASOVA M, DOMINGUEZ-PATIÑO M, et al. Hyper-Rapid thermal defect annealing during grinding of ZnO powders[J]. Journal of Applied Physics, 2002, 92(9): 5566-5568.
[32] PU Y, NIU Y, WANG Y, et al. Statistical morphological identification of low-dimensional nanomaterials by using TEM[J]. Particuology, 2022, 61: 11-17.
[33] LIANG S, GOU X, CUI J, et al. Novel cone-like ZnO mesocrystals with co-exposed (101) and (000) facets and enhanced photocatalytic activity[J]. Inorganic Chemistry Frontiers, 2018, 5(9): 2257-2267.
[34] PENNYCOOK S J, RAFFERTY B, NELLIST P D. Z-contrast imaging in an aberration-corrected scanning transmission electron microscope[J]. Microscopy and Microanalysis, 2000, 6(4): 343-352.
[35] WANG Z, KE X, SUI M. Recent progress on revealing 3D structure of electrocatalysts using advanced 3D electron tomography: A mini review[J]. Frontiers in Chemistry, 2022, 10: 872117.
[36] JIANG D, WANG W. Chapter 11 - Fundamental Studies on Photocatalytic Structures With Well-Defined Crystal Facets [M].Studies in Surface Science and Catalysis,2017. 177: 409-438.
[37] 杨志卿, 胡伟伟, 叶恒强. 镁合金中位错的高分辨Z衬度成像研究[J]. 电子显微学报, 2018, 37(5): 481-489.
[38] LI G, FANG K, CHEN Y, et al. Unveiling the gas-dependent sintering behavior of Au-TiO2 catalysts via environmental transmission electron microscopy[J]. Journal of Catalysis, 2020, 388: 84-90.
[39] MEYER B, MARX D. Density-functional study of the structure and stability of ZnO surfaces[J]. Physical Review B, 2003, 67: 035403.