双层异质晶体结构的电子磁手性二向色性谱解析
符潇潇*,胡绮雯,吴 楷,刘 广,李建军,黄晓旭*
(1.重庆大学材料科学与工程学院国际轻合金联合实验室(MOE),重庆 400044;
2.重庆大学沈阳材料科学国家研究中心,重庆 400044)
摘 要 电子磁手性二向色性(EMCD)是一种元素分辨的高分辨磁矩测量技术。目前针对单晶EMCD信号的解析已经发展出一套常规的方法,但对电子束先后与不同晶体作用时的EMCD信号还缺乏理解,本文针对后者进行深入探讨。基于上下晶体重叠的模型,讨论了下层晶体中弹性和非弹性散射对EMCD信号可能产生的影响。在弹性散射方面,当下层晶体中的二次衍射未打破上层晶体在特定取向下的衍射花样的对称性,使用加和定则可从EMCD信号中有效解析轨道自旋磁矩比。位错线平行于电子束的界面错配位错可能不会为定量结果带来显著误差。在多重散射方面,下层晶体的存在会降低电离边的跃变比,增强多重散射峰,增大轨道自旋磁矩比的定量结果,而且通过常规解卷积难以完全消除这种效应。
关键词 EMCD;二次衍射;多重散射;解卷积
中图分类号:TG115.27;O48;O76+.1 文献标识码:A doi:10.3969/j.issn.1000-6281.2023.06.001
Electron magnetic chiral dichroism in superimposed crystals
FU Xiao-xiao1,2*, HU Qi-wen1, WU Kai1, LIU Guang1, LI Jian-jun1, HUANG Xiao-xu1,2*
(1. International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044,;2. Shenyang National Laboratory for Materials Sciences, Chongqing University, Chongqing 400044, China)
Abstract The electron energy-loss magnetic chiral dichroism (EMCD) technique is generally used to study materials with single crystal structures, while the EMDC signal in superimposed crystals along the beam path has not been well understood. Our work explores the EMCD in superimposed crystals. Using a model of two crystals overlapped along the electron beam path, we discussed the influence of additional elastic and inelastic scattering in the bottom crystal on the EMCD signal. For elastic scattering, the quantification of orbital to spin moment ratio from EMCD signal is effective when the diffraction in the bottom crystal does not break the symmetry of the diffraction pattern of the upper crystal at a specific orientation. The interfacial mismatch dislocations with dislocation line parallel to electron beam would not break the symmetry. For plural inelastic scattering, the existence of the bottom crystal possibly decreases the jump ratio of ionization edges, increases the probability of mixed scattering occurring in the whole system, introduces additional energy shift, and thus affects quantification results. The added EMCD signal intensity at different edges due to plural scattering affects the quantified orbital to spin moment ratio differently. A complete removal of plural scattering effect cannot be achieved by deconvolution.
Keywords EMCD;double diffraction;plural scattering;deconvolution
“全文下载请到同方知网,万方数据库或重庆维普等数据库中下载!”
[1] SCHATTSCHNEIDER P, RUBINO S, HÉBERT C, et al. Detection of magnetic circular dichroism using a transmission electron microscope[J]. Nature, 2006, 441(7092): 486-488.
[2] CALMELS L, HOUDELLIER F, WAROT-FONROSE B, et al. Experimental application of sum rules for electron energy loss magnetic chiral dichroism[J]. Physical Review B, 2007, 76(6): 060409.
[3] SONG D, WANG Z, ZHU J. Magnetic measurement by electron magnetic circular dichroism in the transmission electron microscope[J]. Ultramicroscopy, 2019, 201: 1-17.
[4] SCHATTSCHNEIDER P, HÉBERT C, RUBINO S, et al. Magnetic circular dichroism in EELS: Towards 10 nm resolution[J]. Ultramicroscopy, 2008, 108(5): 433-438.
[5] RUSZ J, MUTO S, SPIEGELBERG J, et al. Magnetic measurements with atomic-plane resolution[J]. Nature Communications, 2016, 7(1): 1-7.
[6] ALI H, RUSZ J, WARNATZ T, et al. Simultaneous mapping of EMCD signals and crystal orientations in a transmission electron microscope[J]. Scientific Reports, 2021, 11(1): 2180.
[7] WANG Z, TAVABI A H, JIN L, et al. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy[J]. Nature Materials, 2018, 17(3): 221-225.
[8] VAN DER LAAN G, FIGUEROA A I. X-ray magnetic circular dichroism—A versatile tool to study magnetism[J]. Coordination Chemistry Reviews, 2014, 277: 95-129.
[9] RUSZ J, RUBINO S, SCHATTSCHNEIDER P. First-principles theory of chiral dichroism in electron microscopy applied to 3 d ferromagnets[J]. Physical Review B, 2007, 75(21): 214425.
[10] LÖFFLER S, SCHATTSCHNEIDER P. A software package for the simulation of energy-loss magnetic chiral dichroism[J]. Ultramicroscopy, 2010, 110(7): 831-835.
[11] FU X, WAROT-FONROSE B, ARRAS R, et al. Quantitative moment study and coupling of 4f rare earth and 3d metal by transmitted electrons[J]. Physical Review B, 2016, 94(14): 140416.
[12] WANG Z Q, ZHONG X Y, YU R, et al. Quantitative experimental determination of site-specific magnetic structures by transmitted electrons[J]. Nature Communications, 2013, 4(1): 1395.
[13] SONG D, TAVABI A H, LI Z A, et al. An in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons[J]. Nature Communications, 2017, 8(1): 15348.
[14] SONG D, LI G, CAI J, et al. A general way for quantitative magnetic measurement by transmitted electrons[J]. Scientific Reports, 2016, 6(1): 18489.
[15] FU X, WAROT-FONROSE B, ARRAS R, et al. Energy-loss magnetic chiral dichroism study of epitaxial MnAs film on GaAs (001)[J]. Applied Physics Letters, 2015, 107(6): 062402.
[16] MUTO S, RUSZ J, TATSUMI K, et al. Quantitative characterization of nanoscale polycrystalline magnets with electron magnetic circular dichroism[J]. Nature Communications, 2014, 5(1): 3138.
[17] SCHATTSCHNEIDER P, STÖGER-POLLACH M, RUBINO S, et al. Detection of magnetic circular dichroism on the two-nanometer scale[J]. Physical Review B, 2008, 78(10): 104413.
[18] WAROT-FONROSE B, GATEL C, CALMELS L, et al. Effect of spatial and energy distortions on energy-loss magnetic chiral dichroism measurements: Application to an iron thin film[J]. Ultramicroscopy, 2010, 110(8): 1033-1037.
[19] ENNEN I, LÖFFLER S, KÜBEL C, et al. Site-specific chirality in magnetic transitions[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(18): 2723-2726.
[20] JIN L, JIA C L, LINDFORS‐VREJOIU I, et al. Direct demonstration of a magnetic dead layer resulting from a-site cation inhomogeneity in a (La,Sr)MnO3 epitaxial film system[J]. Advanced Materials Interfaces, 2016, 3(18): 1600414.
[21] SONG D, MA L, ZHOU S, et al. Oxygen deficiency induced deterioration in microstructure and magnetic properties at Y3Fe5O12/Pt interface[J]. Applied Physics Letters, 2015, 107(4): 042401.
[22] DEL-POZO-BUENO D, VARELA M, ESTRADER M, et al. Direct evidence of a graded magnetic interface in bimagnetic core/shell nanoparticles using electron magnetic circular dichroism (EMCD)[J]. Nano Letters, 2021, 21(16): 6923-6930.
[23] WAROT-FONROSE B, HOUDELLIER F, HŸTCH M J, et al. Mapping inelastic intensities in diffraction patterns of magnetic samples using the energy spectrum imaging technique[J]. Ultramicroscopy, 2008, 108(5): 393-398.
[24] FU X, WU K, SERIN V, et al. Electron energy-loss magnetic chiral dichroism of magnetic iron film affected by an underlayer in a double-layer structure[J]. Applied Physics Letters, 2019, 115(11): 112401.
[25] SCHATTSCHNEIDER P. Linear and chiral dichroism in the electron microscope[M]. Pan Standford Publishing, 2012.
[26] SCHATTSCHNEIDER P, NELHIEBEL M, JOUFFREY B. Density matrix of inelastically scattered fast electrons[J]. Physical Review B, 1999, 59(16): 10959.
[27] ZHONG X, LIN J, KAO S, et al. Atomistic defect makes a phase plate for the generation and high-angular splitting of electron vortex beams[J]. ACS Nano, 2019, 13(4): 3964-3970.
[28] POHL D, SCHNEIDER S, RUSZ J, et al. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM[J]. Ultramicroscopy, 2015, 150: 16-22.
[29] RUSZ J. Role of symmetry in quantitative EMCD experiments[J]. arXiv preprint arXiv:0910.3849, 2009.
[30] MUTO S, TATSUMI K, RUSZ J. Parameter-free extraction of EMCD from an energy-filtered diffraction datacube using multivariate curve resolution[J]. Ultramicroscopy, 2013, 125: 89-96.
[31] SONG D, WANG Z, ZHU J. Effect of the asymmetry of dynamical electron diffraction on intensity of acquired EMCD signals[J]. Ultramicroscopy, 2015, 148: 42-51.
[32] EGERTON R F. Electron Energy-Loss Spectroscopy in the Electron Microscope[M]. New York:Plenum Press, 1996.
[33] RUSZ J, LIDBAUM H, RUBINO S, et al. Influence of plural scattering on the quantitative determination of spin and orbital moments in electron magnetic chiral dichroism measurements[J]. Physical Review B, 2011, 83(13): 132402.
[34] EGERTON R F, WANG Z L. Plural-scattering deconvolution of electron energy-loss spectra recorded with an angle-limiting aperture[J]. Ultramicroscopy, 1990, 32(2): 137-147.
[35] ZENG Z, FU X, HU Q, et al. The influence of residual plural scattering after deconvolution in electron magnetic chiral dichroism[J]. Ultramicroscopy, 2023, 253: 113806.